实现碳中和涉及人为减排、能源结构调整、人工碳汇等手段的实施,这些本质上都属于有序人类活动,其目标是包括中国在内的全球各国通过合理安排和组织,在满足社会经济发展需求的同时使自然环境在一定时空尺度内不发生明显退化,甚至能持续好转。在实施层面,人类社会通过降低碳排放的手段进行气候调控属于对自然环境的人工调控或者最优调控问题,也是自然控制论的研究范畴。
碳达峰与碳中和涉及诸多亟待解决的重要科学问题,一项由中国科学院、中国科学院大学、南京大学等8个单位的27位科研人员组成的研究团队从地球系统科学角度,讨论了支撑“碳达峰、碳中和”目标的大气、陆地和海洋相关的地球系统科学中的若干科学和技术问题及现存的知识不足。从地球系统模式、气候监测指标、温室气体监测技术、碳源/汇核算方法体系等方面,阐述了支撑碳中和的关键技术手段及现存的问题。中国科学院大气物理研究所副研究员蔡兆男为第一作者,中国科学院大气物理研究所副研究员成里京为第二作者。
地球系统科学支撑碳中和的关键技术手段及现存的关键问题,包括:
1.基于地球系统模型模拟和预估气候变化,支撑碳中和路径和目标
地球系统模式能够定量刻画大气、陆地、海洋碳循环等地球系统各部分之间的相互作用过程,是认识、理解全球碳循环过程和机制,以及模拟和预估气候变化的核心工具。通过设置不同的碳中和目标约束(如何减排、如何增汇等),地球系统模式得到最有效、最合理的碳中和路径,从而为寻找碳中和最优科学路径提供强有力的技术和工具支持。当前,我国具有自主知识产权的第二代中国科学院地球系统模式(CAS-ESM2)实现了碳循环和气候的完全耦合,可以模拟地球各主要分系统对不同碳中和路径的响应,包括陆地和海洋碳通量变化、陆表植被和水文变化、气候变化等。然而,当前地球系统模式在功能和性能上还需进一步完善,特别是提升对人为过程、植被动态演变、火干扰、氮循环等过程的描述。
2.天空地一体化温室气体观测系统
2.1 卫星遥感观测
卫星遥感观测可以在碳源/汇核查方面发挥重要作用。我国于2016年发射了第一颗CO2监测科学实验卫星,又陆续发射风云三号D星和高分五号大气成分监测卫星。由于幅宽较小(10—20 km)且重访周期长,国际上现有卫星主要在全球尺度碳源/汇反演中发挥作用,还无法满足点源、城市、区域尺度监测需求。
新一代的温室气体监测卫星的主要发展方向包括:①提高观测的时空分辨率。例如,增加跨轨扫描宽度(> 100 km)以提高覆盖范围(中国风云三号G星、大气环境监测卫星2星),提高时间分辨率(欧洲CO2M多星组网、美国GEOCARB静止轨道卫星),采用激光雷达(欧洲MERLIN、中国“环境一号”卫星)实现昼夜观测,以及温室气体和污染气体协同观测。②发展先进的遥感反演算法、快速高精度辐射传输模式和改进分子光谱学数据库。③进一步发展卫星数据同化方法,实现人为温室气体源汇清单反演能力。
2.2 地面温室气体通量观测技术
过去20多年,全球范围内形成了碳通量观测网络(FLUXNET),为全球碳收支与全球变化研究提供了高质量的温室气体地面通量长期观测数据。面向碳中和的需求,也应把温室气体地面通量的监测网作为整个碳核算监测体系的重要组成部分。该监测网络的建设应关注5个方面:①加强典型城市下垫面的通量监测;②推动观测方法、数据处理、仪器操作和维护的规范化和标准化建设,提升地面观测通量数据的质量和可靠性;③强化非二通量先进测量技术的研发和加强CO2与主要非CO2温室气体(CH4和N2O)的地面通量同步观测;④加快自主技术仪器设备的研发;⑤加强基于自主技术气体分析仪的温室气体和污染气体地面通量观测研究。
2.3 发展人为碳排放观测技术
目前的观测技术在观测非CO2温室气体方面还有较大欠缺。虽然所有7种温室气体都有可满足精度需求的较成熟检测方法,但还存在体积大、成本高、运维难度大、在线化程度低等缺点,因此不利于获得广泛的高分辨观测数据。例如,氧化亚氮(N2O)、六氟化硫(SF6)、三氟化氮(NF3)需要带有电子捕获检测器的气相色谱仪,而氢氟碳化物(HFCs)、全氟碳化物(PFCs)需要气相色谱质谱联用仪。另外,不同高度的浓度观测所代表下垫面通量贡献区有显著的差异,因此基于雷达、高塔、飞机、探空的垂直分布观测也至关重要。
2.4 加强城市碳监测平台建设
城市占陆地面积不到3%,却直接排放了全球约44% 的CO2,间接影响了近80% 的能源相关的CO2排放,是估计人为碳排放的关键区域。在城市尺度上,CO2排放清单的统计数据和排放因子、时空分配方案等具有较大的不确定性,不同清单的差异可达70%~300%,并且无法识别和定位未知的排放源。城市尺度的CO2浓度排放监测和反演可以提供独立的手段校准碳排放清单数据,服务于城市清单碳排放总量验证,追踪城市碳排放清单的遗漏。
3 温室气体源-汇清单核算方法
根据IPCC的国家温室气体清单指南,温室气体的人为源汇清单可用3个层级的方法编制;其中,第一、二层级是排放因子法,第三层级是过程模型法,都统一属于“自下而上”(bottom-up)方法。排放因子法目前还是各个国家或地方政府编制温室气体清单的通行方法。由于活动水平资料难以快速更新,且排放因子数据通常是一些有限条件观测数据的平均值,排放因子法往往不能比较客观地反映温室气体源-汇的动态变化与空间分布。相比而言,过程模型法则可以克服排放因子法的上述不足。但是,过程模型的构建和检验,以及其驱动数据的准备,难度相对较大,这导致过程模型法仅在极少数发达国家及我国的部分土地利用类型(如农田、湿地等)温室气体源-汇清单编制中得到应用。另外,对于土地覆被和土地利用变化引起的温室气体源-汇变化,以及畜牧业的温室气体排放,过程模型法的应用仍然具有挑战性。
“自上而下”方法通过观测大气温室气体浓度,结合气象场资料和大气传输模式,利用同化技术反演估算区域源-汇及变化状况。IPCC最新版的温室气体清单指南首次提出,该方法反演估算的温室气体源-汇状况,作为完全独立的数据,可以被用来验证排放因子法或过程模型法编制的温室气体清单。当前,CO2同化系统发展趋势主要表现在4个方面:①联合同化地基观测和卫星遥感的XCO2(大气CO2柱浓度)数据。②联合同化大气CO2浓度、站点通量、遥感地表参数等数据。③同时优化生态系统和化石燃料燃烧的CO2通量。现有的全球碳同化系统基本上都假设化石燃料燃烧的CO2通量数据无误差,仅优化生态系统CO2通量,但事实并非如此[。14CO2是公认的理想化石燃料燃烧排放指示信号。④通过污染气体和CO2的联合同化,以优化化石燃料燃烧CO2排放。
实施碳中和目标将是我国21世纪最大规模的人类有序活动,涉及地球系统多圈层相互作用,必将触发地球环境演变,并催生新的科学前沿,研究人员提出了3点科学建议:
(1)自主构建气候变化监测指标系统,深入理解气候系统多圈层相互作用过程和机制,为碳中和目标的实现提供科学基础。针对我国尚未建立关键气候变化核心指标实时监测平台的问题,建议积极统筹各方力量,建立我国自主可控的气候变化核心监测指标集和平台,以实现全球气候变化核心数据的自主化并形成国际影响力,动态评估全球气候状况,为应对气候变化提供科学数据基础。对气候系统多圈层相互作用过程和机制的理解,是精准设置减排目标、准确评估气候变化影响和风险的基础。因此,要实现碳中和目标,需要全面加强全球碳汇格局、时间尺度、演化趋势及其与气候系统的互馈机理等方面的重要基础科学研究。
(2)自主研发温室气体监测与核查技术和平台,为碳中和目标提供先进的科技支撑。目前,我国缺乏温室气体源汇评估的自主核查校验方法和技术平台。建议:①在监测数据获取能力方面,突破温室气体空间监测技术、地面监测网、垂直探测、自主先进探测技术、非CO2监测技术,推进城市碳监测平台建设,形成天空地一体化的温室气体监测能力。②在方法体系方面,研发基于天地一体化观测的多尺度温室气体清单校核方法。融合“自上而下”反演方法与高分辨率“自下而上”动态清单方法,实现人为源-汇变化的精细化监测,为国家相关政策的制定提供科学依据。③需要全面认识和调查海洋和陆地的生物及其物理固碳能力,全面监测我国的碳源/汇。
(3)进一步完善地球系统模式,以国家“地球系统数值模拟装置”为核心,建设国家碳中和核算-评估-决策支持中心,用科技能力建设支撑碳中和战略的实施。需要研发和优化可正确刻画碳循环复杂过程的地球系统模型,结合不同减排情景和不同的人类活动影响,预估2030年和2060年的全球及我国碳收支特征,以及我国不同陆地生态系统对碳中和的贡献;研究规划最优碳中和路径的方法论,评估生态工程可能的方案和转换能源结构的最优途径,为我国2060年前实现碳中和目标提供强有力的科技支撑。