土壤科学工作者熟知生物作为五大成土因素之一在土壤发生与演化过程中的作用,但是很少问津土壤在植物起源和演化过程的作用。
南京师范大学地理科学学院蔡祖聪教授认为,陆地植物的起源和演化过程实质上是对其起源土壤环境的适应过程,土壤对起源植物特性的形 成具有“模具效应”。
土壤环境的剖面厚度和层次构型、物理、化学和生物学性质多样性形成了起源植物的多样性。由于植物根生长于土壤,通过根从土壤中吸收营养元素以满足自身生长的需求,因此,植物起源土壤对植物特性形成的作用主要体 现在植物根型、营养生理和抗逆境生理方面的遗传特性。
土壤-植物多样性为不同种类的生物构建了多样化的生境,在生物多样性的形成和维持中发挥着关键作用。保护土壤环境多样性是保护生物多样性的基础。追溯作物的起源土壤环境及其与植物遗传特性的关系对于作物布局和育种、作物养分管理等均具有极为重要的意义。这一研究需要丰富的土壤学、分子遗传学 等多学科的知识。因此,开展这一领域的研究不仅是对土壤学研究领域的拓展和对土壤资源重要性的再认识,也是对土壤学 与分子遗传学等学科交叉融合的客观要求。
亮点论述:
3.研究植物起源土壤环境与遗传特性关系的理论和实践意义
明确起源土壤环境塑造的植物遗传特性,尤其是植物元素化学计量关系、营养生理和抗逆境生理,就有可能从植物的遗传特性追溯植物起源的土壤环境,从而为生物多样性保护、作物选择和育种、作物养分管理提供科学指导。
3.1 保护生物多样性
随着人类环境意识的不断增强,保护生物多样性已经逐渐成为人类的共识。但是,保护土壤多样性对保护生物多样性的意义仍然未被人们所认识和重视。为此,2020年德国联邦环境署土壤保护委员会(Soil Protection Commission at the Federal Environment Agency)、德国土壤学会(German Soil Science Society)等8家单位联合发表了“土壤与生物多样性——政治要求”的政治声明(Political Statement:Soil and Biodiversity—Demand on Politics)[25],呼吁保护土壤,以保护生物多样性。
1)保护土壤环境多样性是保护生物多样性的基础。植物起源的土壤环境塑造植物的遗传特性,土壤与植物共同构建土壤微生物和土壤动物的生境,土壤、植物、土壤微生物和土壤动物共同构建陆上动物生境[26]。由此可见,土壤多样性不仅仅是植物物种多样性和生境多样性的基础,也是整个陆地生物多样性的基础。德国8家单位的政治声明则更认为土壤多样性创造(creates)生物多样性[25]。因此,保护生物多样性首先必须保护生物多样性的基础——土壤多样性。
2)保护土壤多样性的核心是保护土壤的异质性。随着工业化、城市化和交通道路的快速发展,被硬化而失去植物生长功能的土壤面积不断增加,因而减少了植物的生存空间,不利于生物多样性的保护。然而,土壤的同质化对生物多样性的破坏作用更大。土壤多样性表现在土壤分布空间、土体构型、理化和生物性质的多样性,土壤改良过程在很大程度上是按照人类意愿将土壤同质化的过程,即减少土壤多样性的过程。将自然植被改变为农业用地,虽然未改变土壤的植物生长功能,但是改良土壤,消除作物生长的障碍因素以满足作物生长的需要,实质上是土壤同质化的过程,因而不利于生物多样性的保护。由于农业利用的历史更悠久,范围更广泛,所以,它对生物多样性的危害更大。保护生物多样性必须有节制地发展农业生产,保持土壤环境的多样性,即最大限度地保持土壤的异质性。
3)保护逆境土壤对于保护生物多样性具有特殊的意义。因为逆境土壤不利于大多数植物(作物)的生长,所以经常被列入改良之列。适合于逆境土壤的植物一般也能在非逆境土壤中生长[23],但是,在非逆境土壤中它们通常难以与其他植物竞争养分、水分、阳光等而不能获得足够的生存空间。例如,研究表明,适应缺氮、缺磷或缺钾土壤的杂草,在缺氮、缺磷、缺钾土壤中成为优势种,但在氮、磷、钾供应充分且平衡的土壤中,其占比大幅度下降,甚至完全消失[27]。所以,为了保护起源于逆境土壤环境的植物,必须保留其生长的逆境土壤环境具有足够的面积。
3.2 指导作物布局和养分管理
作物布局是丰富农产品种类,提高作物产量、品质和经济效益的基础。小到家庭农场,大到国家均需要进行作物布局。选择种植的作物时必须考虑作物对种植区域气候和土壤的适应性,但往往由于对拟种植区域土壤异质性的认识不足,而不能获得预期的产量效果。认识植物起源土壤环境对其遗传特性的塑造作用,则可以更好地理解“土宜”对名优特作物和“道地”对中药材保持其品质的重要性。
在相同的气候环境下,由于地形、成土母质、成土时间等的差异,土壤属性可以有很大的差别,其中,平原和山地土壤的pH差异是最为常见的现象。土壤pH影响一系列土壤化学和生物学过程。以氮转化过程为例,酸性土壤中硝化作用受到抑制,土壤无机氮以铵态氮为主;中性和碱性土壤中,硝化作用强烈,无机氮以硝态氮为主。植物营养学家们很早就认识到,起源于铵态氮为主土壤的植物喜好吸收铵态氮,起源于硝态氮为主土壤的植物喜好吸收硝态氮[28-29]。作物对无机氮形态的喜好与土壤无机氮主要形态契合是提高作物产量和氮肥利用率、减少氮素损失的基础[30]。违背作物喜好,将喜铵作物种植于硝态氮为主的土壤,或将喜硝作物种植于铵态氮为主的土壤,均不利于其生长,甚至可能绝产[31]。
同一种植物起源于不同土壤环境,它们适应和利用土壤养分、水分的遗传特性不同,因而适应于不同的土壤环境。例如,前文提到的起源于蛇纹岩发育土壤的拟南芥可以在非蛇纹岩发育的土壤中生长,但起源于非蛇纹岩发育土壤的拟南芥则不能在蛇纹岩发育的土壤中生长[23]。水稻起源于湿地,土壤以铵态氮为主,因而喜铵。同一水稻品种种植于pH不同的土壤,对氮的利用率随土壤pH提高,硝化作用强度增大而下降,氮的损失率则随之提高[32]。利用水稻的多起源性[14],将起源于中性和碱性湿地土壤的水稻品种种植于中性和碱性水稻土,将起源于酸性湿地土壤的水稻品种种植于酸性土壤,可能获得较高的氮利用率和较低的氮损失率。毫无疑问,氮不可能是特例,植物起源土壤养分元素贮存形态必然影响植物对这些元素的吸收模式。
在认识作物起源土壤环境特性的基础上进行养分管理可以起到事半功倍的作用。以氮素管理为例,施用硝化抑制剂减少N2O排放和硝态氮淋溶损失,这已经成为共识[33]。但是,施用硝化抑制的作物产量效应则不然。Hu等[34]收集分析在德国进行的硝化抑制剂试验结果,发现施用硝化抑制剂对德国的作物产量无显著影响。但是在一些试验中,施用硝化抑制剂有很好的作物增产效果[35]。显然,从作物起源土壤无机氮主要存在形态塑造的作物无机氮形态喜好的角度审视,很容易理解这种矛盾结果。对于喜硝作物,如果土壤的硝化能力又不是特别强,施用硝化抑制剂,无机氮长时间以铵态氮存在,显然不利于作物对氮素的吸收,因而不利于提高氮肥利用率和作物产量。相反,对于喜铵作物,如果土壤的硝化能力很强,施用硝化抑制剂,延长无机氮以铵态氮存在的时间,有利于作物对氮素的吸收,因而可能取得较好的产量效果[31]。不考虑作物喜好的氮形态及其土壤的硝化能力,而施用硝化抑制剂则很可能达不到减少负面环境效应和提高作物产量的共赢效果。推而广之,作物种植的土壤环境与其起源土壤环境高度一致更有可能实现养分元素的高效利用,反之则否。
3.3 提高对作物生理功能有机联系的认识
土壤性质的相互联系必然要求适应土壤环境的植物生理功能也存在有机联系。例如酸性土壤不仅表现在硝化作用弱,还表现在钙镁等盐基离子不足,磷的有效性低,有铝毒等问题;中性和碱性土壤则相反,不仅pH高,硝化作用强,而且钙镁等盐基离子丰富。湿地土壤与氧气缺乏,氧化还原电位低,土壤还原性物质含量高,氧化性物质含量低等一系列性质相联系。碱性土壤与结构差相联系。等等。植物对起源土壤环境的适应不只是对土壤其中某一特性的适应,而应是对土壤环境的整体适应,因此,其生理功能和支配其生理功能的遗传特性也必然存在着相互联系。在酸性土壤起源的植物,不仅喜铵,而且耐铝毒,适应低钙、镁等盐基离子环境。研究发现,将喜硝的作物移植到酸性土壤,即使供给硝态氮,其生长状况也难以达到在中性或碱性土壤中生长时的状况,反之亦然[31]。植物耐铝毒的能力与供应的氮形态有关,供应铵态氮提高植物耐铝性,而供应硝态氮削弱植物的耐铝性[36]。
认识起源土壤环境塑造的植物生理功能的有机联系对于改善作物产量、品质和抗逆性等新方法和新技术的应用具有很强的指导作用。基因编辑是通过敲除或导入特定基因,改变作物养分吸收和利用能力,提高作物产量,改善作物品质,提高作物抗逆性等的分子育种方法,已经成为当前重要的育种手段[37]。但是,通过编辑基因而改变单一生理功能,其效果有可能因未改变整体生理功能而受到限制,甚至有可能影响整体生理功能的发挥。当土壤养分供应不足时,植物与土壤微生物互作,以获取生长和繁衍所需的营养元素;但植物同时具备在土壤养分供应充分时解除互作关系的功能[19],互作只能满足植物低水平生长的需求。所以,简单地接种与植物互作的土壤微生物,促进对某一元素的吸收,其结果或者难以形成互作关系,或者可以形成互作关系,提高植物获取养分的能力,但只能满足低水平需要,难以获得较高的产量。
研究起源土壤环境对于植物物种多样性形成的驱动作用和起源土壤环境塑造的植物生理和遗传特性,将有助于重新认识土壤的多功能性,并将在生物多样性保护、作物布局和育种,养分管理等领域发挥重要作用。开展这一领域的研究,不仅需要丰富的土壤学知识,而且需要植物分类等多学科的知识,尤其是分子遗传学知识。因此,关注和研究土壤多样性对植物种类多样性的驱动作用和起源土壤环境与植物遗传特性的关系还将极大地推进土壤学与植物分类学、分子遗传学等的多学科的交叉与融合。