• 全部
主办单位:煤炭科学研究总院有限公司、中国煤炭学会学术期刊工作委员会
基于循环特征推理的大间距缺失地震数据重建方法
  • 41
  • 作者

    李紫娟 常光耀 贾永娜

  • 单位

    河北工业大学人工智能与数据科学学院

  • 摘要
    【目的】由于急流、裂谷、高山等自然环境的限制,采集的地震数据会出现大间距缺失的现象,影响后续的地震数据处理和地质分析工作,需要对缺失数据进行插值重建。【方法】为解决大间距地震数据缺失问题,提出一种基于循环特征推理的重建方法。首先缺失的地震数据经过部分卷积运算,在计算过程中根据感受野内有效特征图数据的占比,自适应地调整卷积运算结果的权重,避免在连续缺失的地震道上执行无效的卷积操作。然后采用循环特征推理的方式,逐步对缺失部分进行渐进式重建。部分卷积运算和循环特征推理交替进行,直至所有缺失数据重建完成。最后特征融合每次迭代产生的重建特征,以保证推理的准确性。并且为增强模型对大间距缺失区域纹理细节的学习能力,结合纹理损失和均方误差函数作为复合损失函数,进一步提高重建精度。【结果和结论】结果显示:(1)基于循环特征推理的方法可以有效重建大间距缺失的地震数据,信噪比在原缺失数据的14.89 dB的基础上提升至28.15 dB。(2)连续缺失30道至80道的多次重建实验中,本方法的重建结果在信噪比、结构相似性、均方误差等评价指标均优于U-Net方法。6种不同的公开数据集上测试了本方法的重建效果,进一步证明了本方法的有效性。(3)对比实验探究部分卷积核大小对重建结果的影响表明,当部分卷积核大小为3×3时重建结果信噪比更高并且迭代时间更短。研究成果为大间距缺失地震数据的重建方法提供了新的解决思路。
  • 关键词

    地震数据重建部分卷积循环特征推理复合损失函数

  • 引用格式
    李紫娟,常光耀,贾永娜.基于循环特征推理的大间距缺失地震数据重建方法[J/OL].煤田地质与勘探,1-8[2024-09-06].http://kns.cnki.net/kcms/detail/61.1155.P.20240905.1518.006.html.
相关问题
立即提问

主办单位:煤炭科学研究总院有限公司 中国煤炭学会学术期刊工作委员会

©版权所有2015 煤炭科学研究总院有限公司 地址:北京市朝阳区和平里青年沟东路煤炭大厦 邮编:100013
京ICP备05086979号-16  技术支持:云智互联