引入非线性 元件 |
改进的西原 正夫模型[58] |
|
\( \varepsilon =\left\{\begin{aligned}&\frac{\sigma }{2{E}_{1}}+\frac{\sigma }{2{E}_{2}}\left(1-{{\mathrm{exp}}}\left({-\frac{{E}_{2}}{{\eta }_{1}}t}\right)\right),\sigma < {\sigma }_{\text{s}}\\&\frac{\sigma }{2{E}_{1}}+\frac{\sigma }{2{E}_{2}}\left(1-{{\mathrm{exp}}}\left({-\frac{{E}_{2}}{{\eta }_{1}}t}\right)\right)+\\&\qquad \frac{\sigma -{\sigma }_{\text{s}}}{2{\eta }_{2}}\left(\frac{1}{3}{t}^{3}-\frac{1}{2}\frac{B}{A}{t}^{2}+\frac{C}{A}t\right), \sigma \geqslant {\sigma }_{\text{s}}\end{aligned}\right. \) |
可描述瞬时蠕变、 稳定蠕变、 加速蠕变 |
非线性蠕变 模型[59] |
|
\( \varepsilon =\left\{\begin{aligned}&\frac{{\eta }_{1}}{{E}_{2}}\dot{\varepsilon }+\varepsilon -\frac{{E}_{1}+{E}_{2}}{{E}_{1}{E}_{2}}\sigma =0, \sigma < {\sigma }_{\text{s}}\\&\ddot{\varepsilon }+\frac{{E}_{2}\left(\varepsilon \right)}{{\eta }_{1}}\dot{\varepsilon }-\frac{{E}_{2}\left(\varepsilon \right)}{{\eta }_{1}{\eta }_{2}}\left(\sigma -{\sigma }_{\text{s}}\right), \sigma \geqslant {\sigma }_{\text{s}}\end{aligned}\right. \) |
可分析三阶段蠕变、 稳定性及判据 |
河海模型[61] |
|
\(\begin{aligned}&\varepsilon =\frac{\sigma }{{E}_{1}}+\frac{\sigma }{{E}_{2}}\left(1-{{\mathrm{exp}}}\left({-\frac{{E}_{2}}{{\eta }_{1}}t}\right)\right)+\\&\qquad \frac{\sigma }{{E}_{3}}\left(1-{{\mathrm{exp}}}\left({-\frac{{E}_{3}}{{\eta }_{2}}t}\right)\right)+\frac{\sigma -{\sigma }_{\text{s}}}{{\eta }_{3}}{t}^{n}\end{aligned} \) |
可描述绿片岩 三阶段蠕变, 但元件多 |
分数阶蠕变 模型[63] |
|
\( \varepsilon =\left\{\begin{aligned}&\frac{\sigma }{{E}_{1}}+\frac{\sigma }{{\eta }_{1}}\frac{{t}^{\beta }}{\mathrm{\varGamma }\left(\beta +1\right)},\sigma < {\sigma }_{\text{s}}\\&\frac{\sigma }{{E}_{1}}+\frac{\sigma }{{\eta }_{1}}\frac{{t}^{\beta }}{\mathrm{\varGamma }\left(\beta +1\right)}+\\&\qquad \frac{\sigma -{\sigma }_{{\mathrm{s}}}}{{\eta }_{2}}\frac{{t}^{\varGamma }}{\mathrm{\varGamma }\left(\varGamma +1\right)}, \sigma \geqslant {\sigma }_{\text{s}}\end{aligned}\right. \) |
可描述盐岩 瞬时蠕变、 稳定蠕变 |
非线性分数 阶蠕变模型[64] |
|
\( \varepsilon =\left\{\begin{aligned}&\frac{\sigma }{E}+\frac{\sigma }{{\eta }_{1}}t+\frac{\sigma }{{\eta }_{2}^{\beta }}\frac{{t}^{\beta }}{\mathrm{\varGamma }\left(\beta +1\right)},\sigma < {\sigma }_{{\mathrm{s}}}\\&\frac{\sigma }{E}+\frac{\sigma }{{\eta }_{1}}t+\frac{\sigma }{{\eta }_{2}^{\beta }}\frac{{t}^{\beta }}{\mathrm{\varGamma }\left(\beta +1\right)}+\\&\qquad \frac{\sigma -{\sigma }_{{\mathrm{s}}}}{{\eta }_{3}}H\left(t-{t}_{{\mathrm{F}}}\right), \sigma \geqslant {\sigma }_{\text{s}}\end{aligned}\right. \) |
能描述软岩 三阶段蠕变 |
引入损伤力学和 断裂力学等理论 |
变参数蠕变 损伤模型[65] |
|
\( \varepsilon =\left\{\begin{aligned}&\frac{\sigma }{\left(1-{D}_{t}\right){E}_{1}}+\frac{\sigma }{{\left(1-{D}_{t}\right)\eta }_{1}}+\\&\qquad \frac{\sigma }{\left(1-{D}_{t}\right){E}_{2}}\left(1-{{\mathrm{exp}}}\left({-\frac{{E}_{2}}{{\eta }_{2}}t}\right)\right), \sigma < {\sigma }_{\text{s}}\\&\frac{\sigma }{\left(1-{D}_{t}\right){E}_{1}}+\frac{\sigma }{{\left(1-{D}_{t}\right)\eta }_{1}}+\\&\qquad \frac{\sigma }{\left(1-{D}_{t}\right){E}_{2}}\left(1-{{\mathrm{exp}}}\left({-\frac{{E}_{2}}{{\eta }_{2}}t}\right)\right)+{\varepsilon }^{p}, \sigma \geqslant {\sigma }_{\text{s}}\end{aligned}\right. \) |
能描述软岩瞬时 蠕变、稳定蠕变及 损伤劣化效应 |
BNMC蠕变 损伤模型[66] |
|
损伤变量\( D=1-{\left(1-t/{t}_{{\mathrm{R}}}\right)}^{1/\left(\gamma +1\right)} \) 黏聚力损伤方程\( c\left(t\right)={c}_{0}(1-D) \) 内摩擦角损伤方程\( \varphi \left(t\right)={\varphi }_{0}(1-D) \) |
能描述二辉 橄榄岩三阶段蠕变 |
非线性蠕变 损伤模型[67] |
|
\( \varepsilon =\left\{\begin{aligned}&\frac{\sigma }{{E}_{1}}+\frac{\sigma }{{\eta }_{1}}t{{\mathrm{exp}}}({\lambda })+\frac{\sigma }{{E}_{2}}\left(1-{{\mathrm{exp}}}\left({-\frac{{E}_{2}}{{\eta }_{2}}t}\right)\right),\sigma < {\sigma }_{\text{s}}\\&\frac{\sigma }{{E}_{1}}+\frac{\sigma }{{\eta }_{1}}t{{\mathrm{exp}}}({\lambda })+\frac{\sigma }{{E}_{2}}\left(1-{{\mathrm{exp}}}\left({-\frac{{E}_{2}}{{\eta }_{2}}t}\right)\right)+\\&\qquad \frac{\sigma -{\sigma }_{\text{s}}}{{\eta }_{3}}t,\sigma \geqslant {\sigma }_{\text{s}},\varepsilon \leqslant {\varepsilon }^{*}\\&\frac{\sigma }{{E}_{1}}+\frac{\sigma }{{\eta }_{1}}t{{\mathrm{exp}}}({\lambda })+\frac{\sigma }{{E}_{2}}\left(1-{{\mathrm{exp}}}\left({-\frac{{E}_{2}}{{\eta }_{2}}t}\right)\right)+\\&\qquad \frac{\sigma -{\sigma }_{\text{s}}}{{\eta }_{3}}t{{\mathrm{exp}}}{\left[\beta {(t-{t}^{*})}^{m{D}_{{\mathrm{ini}}}+n}\right]},\sigma \geqslant {\sigma }_{\text{s}},\varepsilon > {\varepsilon }^{*}\end{aligned}\right. \) |
可描述砂岩 三阶段蠕变 |
非线性蠕变 模型[69] |
|
损伤变量\( D=1-E(\sigma ,t)/{E}_{0} \) 非线性蠕变方程\( \varepsilon =\sigma {{\mathrm{exp}}}({\alpha t})/{E}_{0}+B{\sigma }^{(1-r)}{t}^{\beta } \) |
可描述胶结充填体 三阶段蠕变 |