摘要
固体废弃物膏体充填在我国煤炭系统是一种新的胶结充填模式.充填料浆质量的研究至关重要.它是一典型的多输入、多输出、非线性的模糊模型.一方面,运用神经网络结合遗传算法构造了膏体充填料浆质量的隐式模型,建立该模型的方法以神经网络为基础,用遗传算法来学习神经网络的权系数,既保留了遗传算法的强全局随机搜索能力,又具有神经网络的鲁棒性和自学习能力.该模型具有较强预测能力,为优化固体废弃物膏体充填料浆质量的影响因素提供了理论依据.另一方面,利用已训练好的膏体充填料浆质量模型获得遗传算法,对充填料浆质量的影响因素进行优化,该法在配比设计时,可在较少的试验次数下获得较好的配比.