• 全部
主办单位:煤炭科学研究总院有限公司、中国煤炭学会学术期刊工作委员会
基于红外视觉特征融合的矿井外因火灾监测方法
  • Title

    Mine exogenous fire monitoring method using the fusion of infrared visual features

  • 作者

    李晓宇范伟强刘毅霍跃华

  • Author

    LI Xiaoyu;FAN Weiqiang;LIU Yi;HUO Yuehua

  • 单位

    内蒙古大学电子信息工程学院内蒙古自治区智慧通信感知与信号处理重点实验室中国矿业大学(北京)人工智能学院中国矿业大学(北京)网络与信息中心

  • Organization
    School of Electronic Information Engineering, Inner Mongolia University
    Inner Mongolia Key Laboratory of Intelligent Communication and Sensing and Signal Processing
    School of Artificial Intelligence, China University of Mining and Technology-Beijing
    Network and Information Center, China University of Mining and Technology-Beijing
  • 摘要

    为了解决矿井复杂环境下外因火灾监测误报率和漏报率较高的问题,提出基于红外视觉特征融合的矿井外因火灾监测算法。首先,改进红外小目标检测的局部对比度度量(LCM)模型,提高早期火灾目标的显著度,进而分割出火灾疑似区域;其次,通过分析不同监视场景下外因火灾和主要干扰热源在热红外图像序列中的视觉特征,选出抗干扰能力强的火灾显著特征;然后,优选火灾显著特征提取方法和相似度估计策略,以获取热红外图像序列中火灾疑似区域的主要视觉特征,并构建火灾特征向量;最后,通过建立特征向量集,构建基于支持向量机(SVM)的矿井外因火灾检测模型,对所提算法进行验证。结果表明:所提算法不仅能监测不同场景下的外因火灾,还能够监测远距离和早期阶段的外因火灾,其正确率和检测率分别达到96.93 %、96.24 %,误检率低至2.56 %;相较于对比算法,所提算法在火灾监测的准确率、误报率和漏报率方面均有较大的改善。

  • Abstract

    In order to solve the problems of high false positive and false negative rates of external fire monitoring in complex mine environments, a monitoring algorithm using infrared visual feature fusion was proposed. Firstly, the Local Contrast Measure (LCM) model for infrared small target detection was improved to enhance the saliency of early-stage fire targets, thereby segmenting out suspected fire areas. Then, by analyzing the visual features of exogenous fires and major interfering heat sources in thermal infrared image sequences under different surveillance scenarios, the salient features of fires with strong anti-interference ability were preferred. Next, fire salient feature extraction methods and similarity estimation strategies were optimized to obtain the main visual features of suspected fire areas in the thermal infrared image sequences and construct a fire feature vector. Finally, by establishing a feature vector set and constructing a mine exogenous fire detection model using Support Vector Machine (SVM), the proposed algorithm was experimentally validated. The results show that the proposed algorithm realizes exogenous fire monitoring in different scenarios, as well as in remote and early stages, with accuracy and detection rates of 96.93 % and 96.24 %, respectively, and a false detection rate of 2.56 %. Compared to the described comparison algorithms, the proposed method has better improvements in the accuracy, false alarm rate, and leakage alarm rate of fire monitoring.

  • 关键词

    矿井外因火灾红外视觉特征局部对比度度量(LCM)模型特征向量支持向量机(SVM)

  • KeyWords

    mine exogenous fire;infrared visual features;local contrast measure (LCM) model;eigenvector;support vector machine (SVM)

  • 基金项目(Foundation)
    国家自然科学基金(52364017);内蒙古自治区高等学校科学研究基金(NJZY23056)
  • DOI
  • 引用格式
    李晓宇, 范伟强, 刘毅, 等. 基于红外视觉特征融合的矿井外因火灾监测方法[J]. 矿业科学学报, 2025, 10(1): 116-124. DOI: 10.19606/j.cnki.jmst.2024930
  • Citation
    LI Xiaoyu, FAN Weiqiang, LIU Yi, et al. Mine exogenous fire monitoring method using the fusion of infrared visual features[J]. Journal of Mining Science and Technology, 2025, 10(1): 116-124. DOI: 10.19606/j.cnki.jmst.2024930
  • 相关专题
  • 图表
    •  
    •  
    • SVM最优分类示意

    图(4) / 表(3)

相关问题
立即提问

主办单位:煤炭科学研究总院有限公司 中国煤炭学会学术期刊工作委员会

©版权所有2015 煤炭科学研究总院有限公司 地址:北京市朝阳区和平里青年沟东路煤炭大厦 邮编:100013
京ICP备05086979号-16  技术支持:云智互联