作者:柴天佑
作者单位:东北大学流程工业综合自动化国家重点实验室;国家冶金自动化工程技术研究中心 ;东北大学工业人工智能研究院
本文结合工业自动化和信息技术在工业革命中的作用以及制造与生产全流程决策、控制以及运行管理的现状和智能化发展方向的分析, 提出了发展工业人工智能的必要性. 通过对人工智能技术的涵义、发展简史和发展方向的分析以及自动化与人工智能研究与应用的核心目标、实现方式、研究对象与研究方法等方面的对比分析, 提出了工业人工智能技术的涵义. 通过对工业人工智能和工业自动化的研究对象与研究目标对比分析, 提出了工业人工智能的研究方向和研究思路与方法.
亮点论述:
工业人工智能的涵义、研究方向和研究思路与方法:
目前, 制造与生产全流程的决策、控制与运行管理中仍然依靠人凭经验和知识来完成的工作涉及到工业自动化和人工智能技术难以应用的复杂系统, 即机理不清, 难以建立数学模型, 输入与输出相关信息处于开放环境、不确定的变化中, 信息难以获取及感知, 决策目标多尺度多冲突. 当前, 学术界与产业界开始了工业人工智能的研究. 虽然对工业人工智能的界定并不明确且随时间的推移不断变化, 工业人工智能研究与应用的核心目标是: 针对产品与工艺设计、经营管理与决策、制造流程运行管理与控制等工业生产活动中目前只能依靠人的感知、认知、分析与决策能力和经验与知识来完成的影响经济效益的知识工作, 实现知识工作的自动化与智能化, 来显著提高社会经济效益. 工业人工智能的实质是将人工智能技术与具体的工业场景相结合, 实现设计模式创新、生产智能决策、资源优化配置等创新应用. 使工业系统具备自感知、自学习、自执行、自决策、自适应的能力, 以适应变幻不定的工业环境, 并完成多样化的工业任务, 最终达到提升企业洞察力, 提高生产效率或设备产品性能.
工业自动化与工业人工智能在工业生产活动中的发展目标对比分析如下: 针对制造与生产流程中的装备或工业过程, 工业自动化的研究目标是实现装备和工业过程的自动控制和控制系统设定值的优化, 研发控制技术及软件和运行优化技术及软件. 针对产品与工艺设计、生产管理与决策, 工业自动化的研究目标是实现设计、生产管理与决策的信息化, 研发设计软件、ERP、MES等工业软件. 针对仍然依靠人来控制和管理的装备与工业过程, 工业人工智能的研究目标是实现装备和工业过程控制与运行的集成优化, 研发补充和增加人能力的AI算法和AI系统、制造与生产全流程的运行管理与控制一体化软件. 针对依靠知识工作者来完成的产品与工艺设计、生产管理与决策, 工业人工智能的研究目标是实现知识工作自动化与智能化, 研制大数据驱动的运行工况的识别、预测与决策的AI算法和AI系统、人机合作的管理与决策智能化软件、产品与工艺设计过程中补充和增强知识工作者能力的AI系统.
结合制造业的发展现状和实现智能化的需求和工业人工智能的发展目标, 工业人工智能的研究方向为:
1) 复杂工业环境下运行工况的多尺度多源信息的智能感知与识别;
2) 复杂工业环境下基于5G的多源信息快速可靠的传输技术;
3) 系统辨识与深度学习相结合的复杂工业系统智能建模、数字孪生与可视化技术;
4) 关键工艺参数与生产指标的预测与追溯;
5) 复杂工业系统的智能自主控制技术;
6) 人机合作的智能优化决策;
7) 智能优化决策与控制一体化技术;
8) “端-边-云”协同实现工业人工智能算法的实现技术.
为了取得工业人工智能的研究成果, 需要我们借鉴人工智能取得重大进展的研究经验以及数据驱动的人工智能、移动互联网、边缘计算和云计算驱动的工业互联网时代改变科研的进行方式和研究思维方式, 例如信息物理融合系统CPS、会聚研究. 汇聚研究是一种新的研究范式和研究思维方式, 其特点是: 问题驱动—具有挑战性的科学研究难题或社会需求中的重大挑战难题; 跨学科合作研究—整合来自不同学科的知识、方法和专业知识, 形成新的框架来促进科学发现和创新. 学科方法和技术的结合是解决复杂问题的唯一或最佳方案, 团队科学正在成为一种更典型的研究模式. 为此提出如下研究思路与方法:
1) 需求驱动, 找准问题, 即知识工作者通过感知、认知、决策、执行来完成的影响效益的知识工作, 选好应用场景;
2) 确定研究目标, 即以最优秀的知识工作者为参考目标, 达到与超越最优秀的知识工作者的工作效果;
3) 采用CPS思想, 研制面向特定应用领域的工业人工智能系统, 使系统的适应性、自主性、效率、功能、可靠性、安全性和感知与认知的准确性、决策与控制的精准优化远超今天的系统;
4) 基础研究、研发、实验与工业应用相结合.
5) 采用汇聚研究的思想, 将基于机理分析的模型与工业大数据紧密融合与协同, 模型驱动的自动化与数据驱动的人工智能技术紧密融合与协同, 移动互联网、边缘计算、云计算等与计算机管控系统紧密融合与协同, 工业互联网的研究与面向各种制造流程的AI算法和AI系统研究紧密融合与协同, 汇聚各学科研究力量, 长期持续开展学科交叉和跨学科合作研究.