• 论文
主办单位:煤炭科学研究总院有限公司、中国煤炭学会学术期刊工作委员会
基于随钻振动信号及深度学习的岩性智能预测方法研究
  • 135
  • 作者

    王胜赖昆张拯柏君罗中斌李冰乐张洁

  • 单位

    成都理工大学地质灾害防治与地质环境保护国家重点实验室

  • 摘要
    岩性智能预测在地质钻探中的意义十分重要,可以提高勘探、开采效率和成果质量。基于钻进过程中钻头破碎岩石产生的振动信号,提出一种岩性随钻智能预测方法。选取7类尺寸相同的不同岩性的岩石,并设计微钻实验方案,对岩石施加不同钻速、转速以采集多钻进条件下的随钻三轴振动信号,对信号进行预处理滤除干扰信息,通过短时傅里叶变换生成表征信号时频域特征的时频图像,再利用多种数据增强方法增加图像数量并建立为数据库,以增强模型鲁棒性和泛化能力。改进深度学习中VGG11(Visual Geometry Group)卷积神经网络算法,将数据库划分为训练集:测试集=8:2,对训练集图像的有效信息进行特征提取、学习、迭代训练以获得岩性智能预测模型,并不断调整模型的3个超参数(学习率、批处理大小、迭代次数),使得测试集和训练集损失函数曲线拟合以提高模型预测精度。最后用测试集对模型进行多指标评估。实验结果表明:基于随钻振动数据训练得到的岩性智能预测模型泛化能力强,具有高预测精度,最终的整体岩性预测准确率达到96.85%。重点讨论了数据集数量对岩性预测准确率的影响;不同的钻进条件会引起随钻振动信号产生一定规律性的变化,岩石性质会使得振动信号在三轴方向上有所变化;X、Y、Z轴信号表征着钻进过程中钻头破碎岩石的不同过程。提出的岩性实时智能预测方法为钻探工程现场中岩性预测提供了一定的依据和借鉴。
  • 关键词

    岩性智能预测随钻三轴振动信号短时傅里叶变换数据增强改进VGG11算法

  • 引用格式
    王胜,赖昆,张拯,柏君,罗中斌,李冰乐,张洁.基于随钻振动信号及深度学习的岩性智能预测方法研究[J/OL].煤田地质与勘探:1-13[2023-06-08].http://kns.cnki.net/kcms/detail/61.1155.P.20230606.1100.004.html
相关问题

主办单位:煤炭科学研究总院有限公司 中国煤炭学会学术期刊工作委员会

©版权所有2015 煤炭科学研究总院有限公司 地址:北京市朝阳区和平里青年沟东路煤炭大厦 邮编:100013
京ICP备05086979号-16  技术支持:云智互联