论文
论文
期刊
专题
资讯
问答
专家
智库
图表
推荐
视频
高级检索
首页
期刊群
论文库
专家库
图表
专题
问答
视频
图书
科研智库
资讯
行业新闻
学术会议
展会信息
实验室
投稿
各刊稿件投审编端口
写作指导
关于
平台介绍
出版传媒集团
学术期刊工作委员会
主办单位:煤炭科学研究总院有限公司、中国煤炭学会学术期刊工作委员会
首页
>
优先出版
基于自适应多尺度注意力机制的CNN-GRU矿用电动机健康状态评估
工矿自动化
网络首发时间:2024-03-05 10:13:22
69
作者
谭东贵
袁逸萍
樊盼盼
单位
新疆大学智能制造现代产业学院
摘要
利用多传感器信息融合技术进行电动机健康状态评估时,矿用电动机监测数据中存在异常值和缺失值,而卷积神经网络和循环神经网络等深度学习模型在数据质量下降严重的情况下难以有效提取数据特征和更新网络权重,导致梯度消失或爆炸等问题。针对上述问题,提出了一种基于自适应多尺度注意力机制的CNN-GRU(CNN-GRU-AMSA)模型,用于评估矿用电动机健康状态。首先,对传感器采集的电动机运行数据进行填补、剔除和标准化处理,并以环境温度变化作为依据对矿用电动机运行数据进行工况划分。然后,根据马氏距离计算出电动机电流、电动机绕组三相温度、电动机前端轴承温度和电动机后端轴承温度等健康评估指标的健康指数(HI),采用Savitzky–Golay滤波器对指标HI进行降噪、平滑、归一化处理,并结合主成分分析法计算的不同指标对矿用电动机的贡献度,对指标HI进行加权融合得到矿用电动机HI。最后,将矿用电动机HI输入CNN-GRU-AMSA模型中,该模型通过动态调整注意力权重,实现对不同尺度特征的信息融合,从而准确输出电动机健康状态评估结果。实验结果表明,与其他常见的深度学习模型CNN,CNN-GRU,CNN-LSTM,CNN-LSTM-Attention相比,CNN-GRU-AMSA模型在均方根误差、平均绝对误差、准确率、Macro F1及Macro F2等评价指标上更优,且预测残差的波动范围更小,稳定性更优。
关键词
电动机健康状态评估
自适应多尺度注意力机制
CNN-GRU
多传感器信息融合
主成分分析
文章目录
0 引言
1 矿用电动机健康状态评估总体框架
2 数据预处理
3 HI构建
4 CNN-GRU-AMSA模型
4.1 CNN-GRU模型
4.2 AMSA
5 算例分析
6 结论
相关问题
立即提问
工矿自动化
Journal of Mine Automation
中文核心期刊
中国科技核心期刊
RCCSE中国核心学术期刊(A)
中国科学引文数据库(CSCD)来源期刊
0年期
推荐专家
贾县民
推荐企业
太原惠特
推荐专题
《洁净煤技术》首发文章推荐—清洁高效燃烧技术
《洁净煤技术》首发文章推荐—CCUS
《洁净煤技术》“煤与新能源”虚拟专题(二)
《洁净煤技术》“煤与新能源”虚拟专题(一)
《煤炭经济研究》 “能源革命下电力新质生产力构成”专题
《工矿自动化》“矿山无人驾驶技术”专题
《洁净煤技术》“碳材料新技术”虚拟专题(一)|虚拟专题
《洁净煤技术》“煤电三改联动” | 虚拟专题
《煤田地质与勘探》“煤地质与碳中和” | 虚拟专题
《能源环境保护》“重金属污染”研究领域
亮点论文
低碳转型视角下火电上市公司电力新质生产力评价
“双基四柱”现代企业治理体系的创新实践
煤炭微观结构特征对其力学性能、破碎倾向和微尘形成的影响
数智化何以驱动能源电力行业新质生产力发展
矿用锚索腐蚀程度对其力学性能影响特征数值模拟研究
软煤水力压裂孔周应力的时空演化研究
SLAM 技术及其在矿山无人驾驶领域的研究现状与发展趋势
煤电CCUS新质生产力高质量发展路径与策略研究
锚索丝轴向受力–破断能量聚散演化与吸能防护机理
深部高浓度胶结充填开采地表沉陷控制因素及影响规律
主办单位:
煤炭科学研究总院有限公司 中国煤炭学会学术期刊工作委员会
煤问提
问答社区(热门)
问答社区(问答专场)
提问
热议话题
问答
推荐专家
活跃用户
煤传媒
时事
科技
事件
煤视界
专家报告
特别访谈
煤炭科普
会议活动
增强素材
技术宣讲
科技创新50强
2017年度
2016年度
2015年度
会员中心
专家
通讯员
普通会员
登录注册
©版权所有2015 煤炭科学研究总院有限公司 地址:北京市朝阳区和平里青年沟东路煤炭大厦 邮编:100013
京ICP备05086979号-16
技术支持:
云智互联