• 论文
主办单位:煤炭科学研究总院有限公司、中国煤炭学会学术期刊工作委员会
基于YOLOv7-SE的煤矿井下场景小目标检测方法
  • 112
  • 3
  • Title

    A small object detection method for coal mine underground scene based on YOLOv7 SE

  • 作者

    曹帅董立红邓凡高峰

  • Author

    CAO Shuai;DONG Lihong;DENG Fan;GAO Feng

  • 单位

    西安科技大学计算机科学与技术学院

  • Organization
    College of Computer Science and Technology, Xi'an University of Science and Technology
  • 摘要
    目前的小目标检测方法虽然提高了小目标检测效果,但针对的多为常规场景,煤矿井下环境恶劣,在井下小目标检测过程中存在小目标特征信息提取困难的问题。提出了一种基于YOLOv7-SE的煤矿井下场景小目标检测方法。首先,将模拟退火(SA)算法与k-means++聚类算法相融合,通过优化YOLOv7模型中初始锚框值的估计,以准确捕捉井下小目标;然后,在YOLOv7骨干网络中增加新的检测层得到井下小目标高分辨率特征图,减少大量煤尘对井下小目标特征表示的干扰;最后,在骨干网络中的聚合网络模块后引入双层注意力机制,强化井下小目标的特征表示。实验结果表明:① YOLOv7-SE网络模型训练后的损失函数稳定在0.05附近,说明YOLOv7-SE模型参数设置合理。② 基于YOLOv7-SE网络模型的安全帽检测平均精度(AP)较FasterR-CNN,RetinaNet,FCOS,CenterNet,SSD,YOLOv5,YOLOv7分别提升了13.86%,25.3%,16.13%,13.71%,15.53%,11.59%,12.2%。基于YOLOv7-SE网络模型的自救器检测AP较FasterR-CNN,RetinaNet,FCOS,CenterNet,SSD,YOLOv5,YOLOv7分别提升了13.37%,20.16%,15.22%,8.35%,19.42%,9.64%,7.38%。YOLOv7-SE网络模型的FPS较FasterR-CNN,RetinaNe,FCOS,CenterNet、SSD、YOLOv5分别提升了 42.56,44.43,31.74,39.84,22.74,23.34帧/s,较YOLOv7下降9.36帧/s。说明YOLOv7-SE网络模型保证检测速度的同时,有效地强化了YOLOv7-SE网络模型对井下小目标的特征提取能力。③ 在对安全帽和自救器的检测中,YOLOv7-SE网络模型有效改善了漏检和误检问题,并提高了检测精度。
  • Abstract
    Although current small object detection methods have improved the detection performance, they are mostly objected at conventional scenarios. In harsh underground environments in coal mines, there are difficulties in extracting small object feature information during the underground small object detection process. A small object detection method for coal mine underground scenes based on YOLOv7-SE has been proposed. Firstly, the simulated annealing (SA) algorithm is integrated with the k-means++clustering algorithm to accurately capture small underground objects by optimizing the estimation of initial anchor box values in the YOLOv7 model. Secondly, a new detection layer is added to the YOLOv7 backbone network to obtain high-resolution feature maps of underground small objects, reducing the interference of a large amount of coal dust on the feature representation of underground small objects. Finally, a dual layer attention mechanism is introduced after the aggregation network module in the backbone network to enhance the feature representation of small underground objects. The experimental results show the following points. ① The loss function of the YOLOv7 SE network model after training is stable around 0.05, indicating that the parameter settings of the YOLOv7 SE model are reasonable. ② The average precision (AP) of helmet detection based on the YOLOv7-SE network model has improved by 13.86%, 25.3%, 16.13%, 13.71%, 15.53%, 11.59%, and 12.2% compared to FasterR-CNN, RetinaNet, FCOS, CenterNet, SSD, YOLOv5, and YOLOv7, respectively. The self rescue device detection AP based on the YOLOv7 SE network model has improved by 13.37%, 20.16%, 15.22%, 8.35%, 19.42%, 9.64%, and 7.38% compared to FasterR-CNN, RetinaNet, FCOS, CenterNet, SSD, YOLOv5, and YOLOv7, respectively.The FPS of the YOLOv7 SE network model has increased by 42.56, 44.43, 31.74, 39.84, 22.74, and 23.34 frames/s compared to FasterR-CNN, RetinaNe, FCOS, CenterNet, SSD, and YOLOv5, respectively, and decreased by 9.36 frames/s compared to YOLOv7. The YOLOv7-SE network model effectively enhances the feature extraction capability of the YOLOv7-SE network model for small underground objects while ensuring detection speed. ③ In the detection of safety helmets and self rescue devices, the YOLOv7-SE network model effectively improves missed and false detection, and improves detection precision.
  • 关键词

    煤矿井下小目标检测特征提取YOLOv7聚类分析模拟退火

  • KeyWords

    underground coal mine;small object detection;feature extraction;YOLOv7;clustering analysis;simulated annealing

  • 基金项目(Foundation)
    陕西省自然科学基础研究 计划项目(2019JLM-11);陕西省教育厅科研计划专项项目(8146119003); 陕西省自然科学基金项目 (2018JQ5095)。
  • 文章目录
    0引言
    1 YOLOv7网络模型
    2 YOLOv7-SE小目标检测方法
    2.1 融合SA和k-means++聚类算法
    2.2 新的目标检测层
    2.3 引入双层注意力机制
    3 实验结果与分析
    3.1 数据集
    3.2 评价指标
    3.3 实验配置
    3.4 结果分析
    3.4.1 模型训练
    3.4.2 对比实验
    3.4.3 消融实验
    3.4.4检测效果对比分析
    4结论
  • DOI
  • 引用格式
    曹帅,董立红,邓凡,等. 基于YOLOv7-SE的煤矿井下场景小目标检测方法[J]. 工矿自动化,2024,50(3):1-7.
  • Citation
    CAO Shuai, DONG Lihong, DENG Fan, et al. A small object detection method for coal mine underground scene based on YOLOv7 SE[J]. Journal of Mine Automation,2024,50(3):1-7.
  • 图表
    •  
    •  
    • YOLOv7网络结构

    图(7) / 表(3)

相关问题

主办单位:煤炭科学研究总院有限公司 中国煤炭学会学术期刊工作委员会

©版权所有2015 煤炭科学研究总院有限公司 地址:北京市朝阳区和平里青年沟东路煤炭大厦 邮编:100013
京ICP备05086979号-16  技术支持:云智互联