• 论文
主办单位:煤炭科学研究总院有限公司、中国煤炭学会学术期刊工作委员会
煤矿井下单轨吊无人驾驶目标识别算法与轨道接缝检测方法
  • 75
  • 作者

    王茂森鲍久圣章全利杨阳袁晓明阴妍张可琨葛世荣

  • 单位

    中国矿业大学机电工程学院石家庄煤矿机械有限责任公司中国煤炭科工集团太原研究院有限公司中国矿业大学(北京)机械与电气工程学院

  • 摘要
    单轨吊作为煤矿井下辅助运输的重要设备形式之一,具有运载能力大、爬坡能力强等优点,在煤矿智能化建设背景下无人驾驶是其必然的发展方向。为确保无人驾驶单轨吊在井下巷道内的安全行驶,对于轨道接缝和关键目标的可靠检测尤为重要,从提高单轨吊无人驾驶安全通过性出发,对单轨吊无人驾驶目标识别算法与轨道接缝检测方法两大主要方面展开了研究。首先,对矿井图片数据集进行了增强处理,提高了其多样性;提出了一种加入改进通道注意力机制ECA_s和EIOU回归损失函数的YOLOv5算法,并对改进后的YOLOv5算法进行试验分析,结果表明:采用改进后的YOLOv5算法,识别准确率提高了9.1%,mAP提升了3.6%。其次,建立了基于机器视觉的单轨吊轨道接缝检测方法,采用图像预处理、直方图信息统计、形态学处理等技术,根据标定系数计算轨道接缝距离,结果表明:基于机器视觉的轨道接缝检测算法处理一张接缝图像的检测误差仅为0.3 mm。最后,开展了单轨吊无人驾驶目标检测试验,结果表明:改进后的YOLOv5目标检测算法平均精度达到90.3%,具有更高的检测准确率;单轨吊轨道接缝检测算法处理接缝图像的平均检测误差为0.73 mm、最大检测误差不超过1.1 mm,具有更高的检测精度。为保障煤矿井下单轨吊无人驾驶安全通过性和可靠性,提供了务实可行的检测方案和精确可靠的检测算法。
  • 关键词

    单轨吊无人驾驶机器视觉目标检测YOLOv5接缝检测

  • 文章目录
    1 单轨吊无人驾驶目标检测系统
    2 基于改进YOLOv5的单轨吊无人驾驶目标检测算法
    2.1 改进YOLOv5目标检测算法
    2.1.1改进通道注意力机制的检测网络结构
    2.1.2 损失函数设计
    2.2 目标检测试验参数与检测结果分析
    2.2.1数据集制作
    2.2.2 实验参数设计
    2.2.3 实验结果分析
    3 基于机器视觉的单轨吊无人驾驶轨道接缝检测方法
    3.1 单轨吊轨道接缝检测流程
    3.2 单轨吊轨道接缝图像预处理
    3.2.1 接缝图像ROI提取
    3.2.2 接缝图像通道提取
    3.2.3 接缝图像降噪滤波处理
    3.3 单轨吊轨道接缝判断
    3.4 基于形态学的轨道接缝大小检测
    3.4.1 接缝图像二值化
    3.4.2 接缝图像形态学处理
    3.4.3 LSD直线检测算法
    3.4.4 轨道接缝尺寸标定
    3.4.5 轨道接缝图像检测结果分析
    4 单轨吊无人驾驶目标检测试验
    4.1 目标检测试验结果与分析
    4.2 轨道接缝检测试验结果与分析
    5 结论
  • 相关文章
相关问题

主办单位:煤炭科学研究总院有限公司 中国煤炭学会学术期刊工作委员会

©版权所有2015 煤炭科学研究总院有限公司 地址:北京市朝阳区和平里青年沟东路煤炭大厦 邮编:100013
京ICP备05086979号-16  技术支持:云智互联