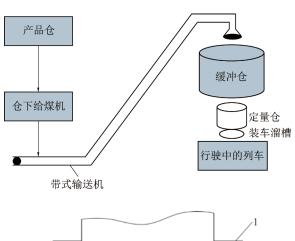
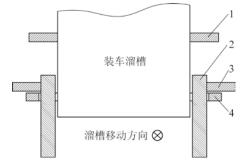
# 快速装车系统洒煤喷煤问题的技术改造


❷ 肖文远 高天强 刘鑫


型选煤厂的商品煤通过快速装车系统装入火车进行铁路运输销售,快速装车系统主要包括缓冲仓、定量仓、装车溜槽和其他辅助系统组成,装车速度快、质量高,受到煤炭企业的广泛青睐。产品仓的煤通过仓下给煤机进入带式输送机,运输至装车缓冲仓,经过配煤闸板向定量仓配煤,称好的煤通过放煤闸板和装车溜槽装入行进中的火车实现外运,快速装车系统工艺如图1所示。

神东煤炭集团分选中心现有装车系统18套, 其中旋转溜槽13套、垂直溜槽5套,依靠18套装车 系统每年输送约2亿t煤炭,但在生产运行过程中尚 存在一些问题,主要为以下3个方面:

- 1)煤从装车溜槽落入车厢过程中,煤流速度 快、冲击力大,再加上定量装车原则,容易在最后 装车定量过程中出现煤从车厢两侧洒出的现象。
- 2)煤从装车溜槽落入车厢瞬间,气体压力 大、释放速度慢,且仓内煤疏松,受重力作用,仓 内空气压缩,从车厢底部反冲起来的密集空气通过 装车溜槽进入定量仓,容易导致煤尘从定量仓液压 闸板、定量仓软连接处喷出。
- 3)在装车过程中,从装车系统固定溜槽与移动溜槽之间运行方向的缝隙间喷煤。

上述3种情况均会造成环保问题,增加员工清扫煤尘、清理煤块的劳动强度,同时威胁员工职业健康。基于上述情况,从装车溜槽结构设计上进行了优化,利用气体热力学原理着手展开研究并提出改造方案,从根本上解决装车系统洒煤、喷煤现象。

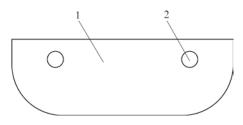




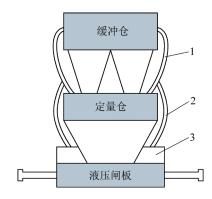
1—活动挡板垂直方向上限位,2—活动挡板; 3—活动挡板垂直方向下限位,4—活动挡板安装槽

1 图1 快速装车系统工艺流程 2 图2 装车溜槽优化方案示意

#### 防止装车系统洒煤喷煤的应对措施


#### 装车溜槽两侧围裙处增设洒煤活动挡板

通过在装车溜槽两侧围裙处增设材质为45#20 mm厚的钢板或者聚氨酯胶板制成的洒煤活动挡板,根据煤在车皮内的高度自动调节开合度,最大限度贴近煤表面,阻止煤的外洒,如图2所示。为防止活动挡板掉落造成机电事故或者影响装车稳定运行,根据活动挡板的高度,特意增设了活动挡板上限位,确保活动挡板不会因为煤或者车厢将其顶起而脱落。


## ② | 革新・改造 | Innovation & Improvement



1-活动挡板垂直方向上限位,2-活动挡板, 3-活动挡板垂直方向下限位,4-活动挡板安装槽



1-活动挡板,2-活动挡板下限位



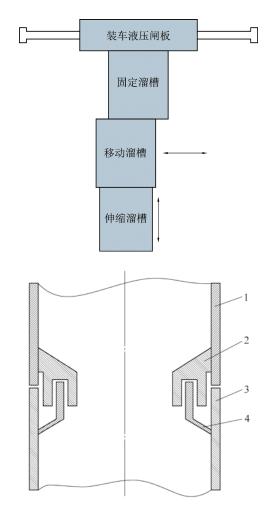
1-缓冲仓排气管路, 2-定量仓排气管路, 3-煤尘缓冲空间

3 图3 活动挡板上限位安装示意 4 图4 活动挡板示意 图5 增设定量仓排气管路

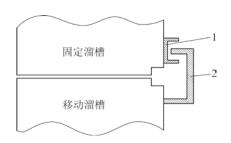
活动挡板上限位下表面与活动挡板安装槽上表 面的距离必须小于活动挡板的高度,以防止活动挡 板脱落;活动挡板上限位的安装高度必须满足活动 挡板的顶部与上限位接触时,活动挡板底部位置必 须在装车溜槽底部之上,以防在装煤过程中活动挡 板与车帮发生卡阻现象,如图3所示。

沿着装车方向,活动挡板前后两端形状须为圆 弧过渡, 以防在装车过程中, 装完一节过渡到下一 节时,活动挡板端部直角与车厢发生卡、阻现象, 造成机电事故,活动挡板轮廓如图4所示。

活动挡板安装槽的宽度必须大于活动挡板厚度 (10~15 mm),以防止在装车运行过程中由于间


隙小而发生活动挡板憋死现象;由于活动挡板在 运行过程中会发生上下往复运动,且频次较高,再 加上活动挡板自身的质量,在下落过程中惯性和冲 击力大, 因此焊接在活动挡板上面的下限位材质硬 度必须够高,且柔性良好,强度够大。试验数据表 明, 官选用直径100 mm的45#圆钢, 焊接工艺为满 焊,且严格实施打磨、开坡口工艺。

#### 新增定量仓泄压装置及排气管路


为解决局部空间煤尘气体压力大造成煤从定量 仓液压闸板喷出问题,首先,需解决煤尘压力大的 问题,可通过增大煤尘释放空间,降低气体压力, 具体措施为拆除定量仓液压插板上盖板, 在上盖板 上方焊接适当容积的煤尘缓冲空间,确保煤尘压力 在适度范围内; 其次, 在确保煤尘压力适中的情况 下,将煤尘气流通过管道输送到外面,具体措施为 在煤尘缓存空间上盖面、定量仓上表面、缓冲仓两 侧面打孔,焊接直径不小于80 mm的无缝钢管,无缝 钢管分别连接在定量仓排气管路和缓冲仓排气管路 的上面, 从煤仓反冲上来的煤尘气流通过煤尘缓冲 空间进入定量仓和定量仓排气管路,再逐步进入缓 冲仓和缓冲仓排气管路, 从缓冲仓排出的气体通过 仓顶的除尘系统吸入,经过滤后排至周围环境,既 改善了环境,保障了作业人员的身心健康,又大幅 度降低了作业人员清理煤尘的劳动强度。需要注意 的是,由于装车系统采用定量装车,为不影响称重系 统的精准性, 所有焊接在煤尘缓冲空间、定量仓、缓 冲仓上面的无缝钢管必须与母体实现软连接(不直接 焊接,通过一定的软材料与母体隔开),如图5所示。

### 新增装车系统固定溜槽与移动溜槽相对运动方向密 封系统

装车溜槽分为旋转装车溜槽和移动装车溜槽, 移动装车溜槽较为特殊,其运行方式如图6所示。 固定溜槽安装在装车液压闸板下方,移动溜槽通过 液压驱动在固定溜槽下方左右移动, 伸缩溜槽通过 液压驱动安装在移动溜槽内部实现上下运动。当装 车系统工作时,移动溜槽从左面移动到固定溜槽正 下方, 当车皮进入装车溜槽下面时, 伸缩溜槽从移



1—固定溜槽, 2—固定溜槽槽钢型槽, 3—移动溜槽, 4—移动溜槽单线轨



1-固定溜槽背对装车控制室外侧安装槽钢

- 2-移动溜槽背对装车控制室外侧安装槽钢
- 6 图6 移动式装车系统工作原理 7 图7 溜槽密封结构 8 图8 槽钢互扣结构

动溜槽下方伸出进入车厢,实现装车;装完一节车 皮时,伸缩溜槽垂直移动上升到移动溜槽里面,准 备装下一节车皮;装车完毕,伸缩溜槽全部垂直上 升到移动溜槽内部,同时移动溜槽从固定溜槽下方 左移至一定位置,以免影响其他列车的正常行驶。

由移动溜槽的装车原理可知, 在装车过程中, 其固定溜槽与移动溜槽间存在相对运动,且存在一 定的间隙。在实际装车过程中,有很多煤尘、煤颗 粒容易从间隙内喷出来而造成环境污染,并增加清 扫人员的劳动强度和职业健康问题。为解决上述问 题,从密封角度出发,设计了一套密封机构,杜绝 了喷煤现象的发生。具体措施为在固定溜槽沿着移 动溜槽运行方向两侧下方焊接槽钢型槽, 在移动溜 槽运行方向左右两侧内部焊接单线轨, 便于槽钢型 槽与单线轨形成环环相扣的密封结构, 彻底杜绝装 车溜槽喷煤现象的发生。需要注意的是, 在焊接槽 钢型槽、单线轨过程中,必须与固定溜槽、移动溜 槽焊接牢固,选用耐冲击、耐磨损的材质。此外, 槽钢型槽与单线轨左右两侧以及顶部必须有足够的 间隙,以防止出现卡阻现象而造成事故,溜槽密封 结构如图7所示。

#### 在移动式装车溜槽上增设密封实施

在固定溜槽、移动溜槽外侧背对装车控制室方 向增设槽钢互扣结构,防止喷煤,如图8所示。

#### 应用效果

- 1)彻底改变了分选中心18个装车系统定量 仓、装车溜槽落入车厢的洒煤现象。
- 2)技术改造之前,装车塔楼定量仓、缓冲仓、站台需安排2名清扫工进行清扫标准化作业,改造之后,不再安排专人清理;分选中心现有装车塔楼装车系统18套,技术改造后人力资源至少可减少46人。
- 3)技术改造后装车周边环境大幅改善,装车 人员的职业健康得到保障。
- 4)保障了装车系统的稳定安全运行,推进了标准作业的稳步实施。

■ **责任编辑:** 李金松

#### 作者简介:

第一作者: 肖文远,高级工程师,主要从事矿用机械设备高端研发。E-mail: 362811648@qq.com

作者单位: 国能神东煤炭集团有限责任公司高端设备研发中心