红柳林煤矿智能仓储建设实践

❷ 王栋 王云峰 吴奎

前,煤矿库存存取货全部靠员工进入货 架存储区完成, 货物在货架上的存放按 照物料和货架一对一关系强制性摆放,

没有统一的、规范的系统辅助管理,很大程度上影 响了工作效率。同时也缺少现代化技术手段,还是 依靠传统的人工手持单据清点的方式,效率低、出 错率高。另外, 员工在存取货的时候进入货架区域亦 存在一定的安全风险,对安全生产造成了一定的影响。

随着仓储物流行业步入自动化系统集成时 代,以仓储货架为存储主体的设备,已逐步发展为 自动化物流系统存储方式,工作主体也由货架存 储转变为机器人+货架,形成系统集成物流储存体 系,作为以货架+穿梭车+提升机+拣选系统+控制 软件+仓库管理软件集成的存储系统,成为目前主 要的存储模式之一。

智能仓储库房设计

陕煤集团神木红柳林矿业有限公司(简称红柳 林煤矿)智能库房货架分为重型四向车密集仓储区 和轻型四向车密集仓储区(图1)。重型四向车密 集仓储区配备3台四向车,2台垂直输送机,四向车 可实现换层运行,储存货架数量为1 113个货位,轻 型四向车仓储区配备4台四向车,2台垂直输送机, 储存货架数量为4 352个货位。实现全自动上架。托 盘/料箱标签采用条形码进行管理,前端设计有外形 尺寸检测和称重装置,确保货物安全上架。

穿梭式四向车

穿梭式四向车控制单元通过上位机下达指 今,四向车的运动采用先进的条码定位和伺服技术

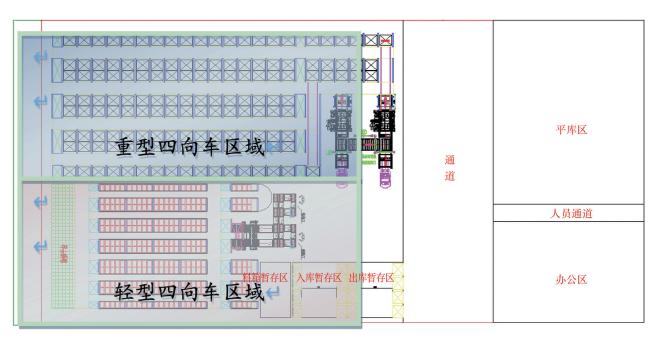


图1 红柳林煤矿智能库房货架区域分布

实现高精度定位。通过四向穿梭车(图2),仓库 实现了以下自动化效果:

- (1) 智能四向穿梭车能特定数量单次/连续自 动存取货,换道换层和自动爬坡,能在立体货架 的交叉轨道上沿纵向或横向轨道行驶, 达到仓库任 何一个货位, 无需借助其他外部设备; 具有四向行 驶、智能爬坡、自动调平、智能控制的优势。
- (2) 灵活性高,可任意变换作业巷道,并通 过增减穿梭车的数量来调节系统能力, 必要时可通 过组建作业车队的调度方式来应变系统的峰值,解 决出入作业的瓶颈。
- (3) 可以相互替换, 当某台穿梭车或提升机 出现故障时, 可通过调度系统调度其他穿梭车或提 升机,继续完成作业,系统能力不受影响。
- (4) 当碰到障碍物或是走到尽头会自动停止 并做出相应的反应, 选择最佳的行走路线。
 - (5) 货架系统的安全性、稳定性更高。
- (6) 能够自动检测电量, 当电量不足时能够 自动回到充电位置充电, 无需人工检测。

输送线

采用输送线(图3)替代人工入库,仓库实现

了以下自动化效果:

输送线能够完成物料的输送任务。在环绕库 房的场地,设置由带式输送机、滚筒输送机等组成 的各输送链,经首尾连接形成连续的输送线。在物 料的人口处和出口处设有路径岔口装置、升降机和 地面输送线。这样在库房范围内就形成了一个既可 顺畅到达各个存放位置,同时又是封闭的循环输送 线系统。所有生产过程中使用的有关材料、零件、 部件和成品等物料,都须装在贴有条形码的托盘箱 里才能进入输送线系统。在生产管理系统发出生产 指令后,装有物料的托盘箱从指定的入口处进入输 送线系统。

物流输送线自动控制系统主要利用WCS系统 与PLC控制技术相结合, WCS系统按照生产计划指 令,通过PLC程序使用线体扫码器自动动识别功能 和输送线系统, 自动地和柔性地把托盘箱里的生产 物料,以最佳的路径、最快的速度,准确地从线体 的一个位置输送到另一个位置,完成生产物料的时 空转移, 保证生产计划按需要协调进行和按需要迅 速变化,保证设备和生产的高效率运行。在这个过 程中,最佳路径控制成为物流自动控制系统的技术关 键,而系统其他部分则围绕路径控制进行相应工作。

在输送线的各入口处,操作人员按照生产计

图2 四向穿梭车

杂志官网: www.chinamai.org.cn

图3 输送线

划,把物料按种类装入不同的托盘箱,再通过手持 式条形码激光扫描仪把这些托盘箱的条形码输入到 生产管理系统中。生产管理系统对收到的每个托盘 箱条形码,依据生产调度计划,立即产生1条该托 盘箱的生产指令,并放入到生产指令表格中,以便 物流自动控制系统查找。每条生产指令内容由3个 部分组成:该托盘箱上的条形码代码、该托盘箱在 输送线上的入口位置和出口位置。

AGV 叉车

AGV 叉车无需人工驾驶运行, 可以有效适应 当下高效率的现代智能仓库的要求。AGV叉车是 一种无线调度的自动导引小车,结合条码技术和 数据采集技术,采用电磁感应作为导航方式且辅 助RFID (无线射频)识别,从而可以运行复杂路 径、多站点可靠循迹等操作。AGV叉车自动存取 货流程如图4所示。

仓储自动化控制软件

通过仓储自动化控制软件(WCS),可实时 接收设备的作业方式、状态信息以及报警信息,同 时图形化动态显示于监控界面。主要显示的信息如 下: 水平位置所在的列、载货台所在的层、当前模 式(单机、手动、自动、联机等)、工作状态(入 库、出库等)、起升速度、行走速度和货叉位置。 仓储自动化任务管理如图5所示。

智能仓储管理系统

智能仓储管理系统实现了仓库的智能调度、 仓库的物料扫码收料和发料的过程管理以及库存状 态管理。

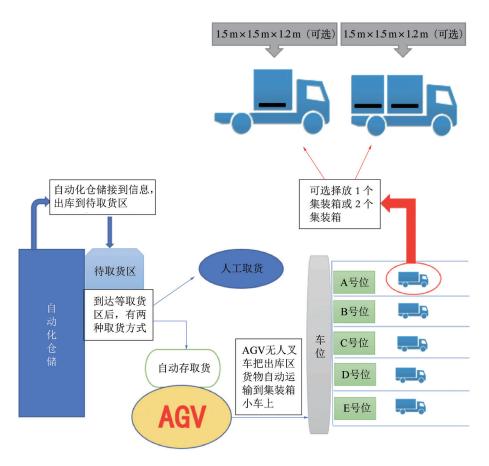


图4 AGV叉车自动存取货流程

(1) 收货管理

对接采购管理系统,自动生成收料任务并向 自动仓库下发收料指令,实现自动上架并生成采购 入库凭证,实现收料任务的自动下达、自动收料和 自动记账,可以实现扫描条码收货,自动生成收货 单记账。

(2) 发货管理

对接采购管理系统,自动生成发料任务并向 自动仓库下发发料指令,实现自动分拣和下架,并 生成采购入库凭证,实现收料任务的自动下达、自 动收料和自动记账,可以实现扫描条码发货,自动 生成发货单记账。

(3) 库存管理

实现库存盘点的管理、损益调整、库存查询、库存收发明细表和库存收发汇总表的查询分析。

(4) 报表

实现库存的监控、异常预警和看板等。

智能仓储关键技术

红柳林煤矿智能仓储系统基于煤矿物资管理 平台建设,根据统一数据资料对货物进行标签化管 理,区分大小件,通过唯一的标签号和条形码作为 物资的身份证,判定入库对应的料箱库或托盘库。 此系统应用于仓储管理的收货作业、拣货作业、库 存盘点等日常作业环节,并利用物联网技术对货物 进行识别、定位等功能,可提高煤炭企业物资仓储 管理效率和精细化程度。

通过建设自动化立体库,采用高层货架储存料箱,可大幅增加仓库的有效高度和单位货位利用率,可充分利用仓库的有效面积和储存空间,从而在不扩大土地使用面积的情况下,实现扩大库房使用面积的目的。

通过大屏实时数据监测,同步反馈智能仓库出入库情况、商品品类、使用情况等综合数据,从

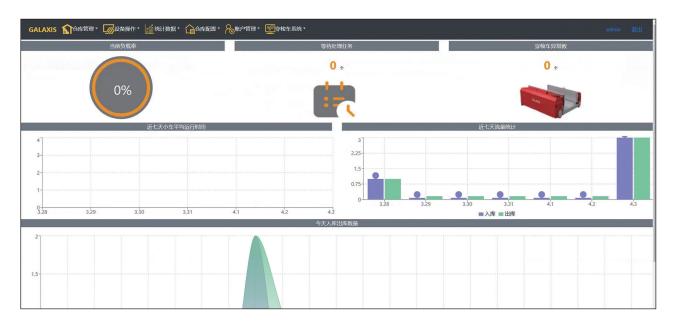


图5 仓储自动化任务管理

而把控设备运行过程中从设备购买到最终清理、报 废、维护的系统性管理过程。

红柳林煤矿智能仓储系统实现了对设备的安 全使用,提高了使用效率,并有效地使用财力,从 而实现了设备全生命周期的管理。

智能仓储应用效果

随着经济全球化和信息技术的迅猛发展,煤 矿企业获取生产要素与营销产品的范围日益扩大, 社会生产、商品流通、商品交易及其管理方式都正 在发生深刻的变革。

仓储管理是企业物资管理的重要环节, 煤矿企 业物资采购和物资仓储管理等方面的控制环节多, 对安全生产的要求也很高。

红柳林煤矿智能仓储管理系统在实际应用 中,主要体现以下4点优势:

- (1) 信息化。通过物联网技术,实现了仓储 设备、物流设备和自动化软件系统的互联互通及高 效协同。
- (2) 精细化。通过智能仓储物流设备、智能 仓库自动化控制系统和看板系统实现了作业过程、 库房状态、发料全流程数据的可视化、透明化。

- (3) 自动化。通过无人叉车、自动化控制系 统、穿梭四项车、重型四向车等设备,实现了货物 自动化操作,从源头上避免了物资管理中的人工差 错,在提高仓储运转效率的同时减少了隐患事故发 生,真正实现了"减人、提效、增安"。
- (4) 智能化。通过智能仓储物流设备和智能 仓库自动化控制系统的无缝配合,实现了作业调 度、分拣、运输、异常状态预警的智能化。

结语

红柳林煤矿智能仓储系统通过数字化技术, 做到了物料科学定置、码放整齐、货标清晰、无人 存取货,以标准化精细化管理打造标杆库房,提升 库房一流管理水平,逐步向智能矿山和智能化示范 煤矿标杆引领的目标迈进。

■ 责任编辑: 李金松

作者简介:

第一作者:王栋,经济师,现任陕煤集团神木红柳林矿 业有限公司物资管理部部长。

E-mail: 494432042@qq.com

作者单位: 陕煤集团神木红柳林矿业有限公司