• 全部
主办单位:煤炭科学研究总院有限公司、中国煤炭学会学术期刊工作委员会
基于上采样算法的煤矿巷道稀疏点云增稠方法
  • Title

    Thinning point cloud thickening method of mine roadway based on up-sampling algorithm

  • 作者

    黄晨烜王雷

  • Author

    HUANG Chenxuan;WANG Lei

  • 单位

    煤炭科学研究总院中煤科工机器人科技有限公司

  • Organization
    China Coal Research Institute
    China Coal Technology and Engineering Group Robot Technology Co., Ltd.
  • 摘要

    受限于井下防爆要求,目前可以应用于煤矿井下的激光雷达线束多为少线束的小功率激光雷达,其形成的点云较为稀疏,缺乏对环境的细节描述,导致机器人建图性能不佳。提出了一种基于复合残差自注意力网络(Composite residual self-attention network, CRSA-Net)的巷道点云上采样技术,旨在通过端到端的方式实现点云特征增稠,在一定程度上弥补传感器精度低下的问题。首先,对点云中的粉尘、水雾噪声进行离群点去除,并根据现场特点采用法向量聚类方式分割不同退化程度的点云区域;其次,为提高训练数据局部细节质量,基于KD树结构提取点云片,针对稀疏点云内部数据相关性不强的问题,提出了采用特征计算及特征维度扩展的方法,加强对网络训练结果的约束,采用了级联渐进式的复合残差自注意力方法,保证网络对结构退化点云的全局和局部特征学习;最后,利用密集的点特征,使用多个独立的MLP进行特征扩展,通过基于点特征的全连接层输出稠密点云。采用国家能源集团寸草塔煤矿井下某巷的数据及WHU-LTS开源数据构建了1组稠密点云数据集用于训练和测试,在上采样试验中,提出的方法CD指标达到11.35×10−3,EMD指标达到5.52×10−3,HD达到112.31×10−3

  • Abstract

    Limited by the requirements of underground explosion protection, the laser radar that can be applied in coal mine is mostly low-power lidar with a few line harnesses, which forms sparse point clouds and lacks detailed description of the environment, resulting in poor mapping performance of robots. A composite residual self-attention network (CRSA-Net) based sampling technique for roadway point cloud is proposed, aiming to achieve the point cloud feature thickening through an end-to-end approach, and to make up for the low accuracy of sensors to a certain extent. Firstly, the dust and water fog noise in the point cloud are removed by outliers, and the point cloud regions with different degradation degrees are segmented by normal vector clustering according to the site characteristics. Secondly, in order to improve the local detail quality of training data, point cloud slices are extracted based on KD tree structure. To solve the problem of weak correlation of data in sparse point cloud, a method of feature calculation and feature dimension extension is proposed to strengthen the constraints on network training results. A cascaded and progressive compound residual self-attention method is adopted to ensure the network to learn the global and local features of the structurally degraded point cloud. Finally, using dense point features, multiple independent MLPs are used for feature extension to output dense point clouds through a fully connected layer based on point features. A dense point cloud dataset was constructed for training and testing by using the data of a lane in Cuncaota Coal Mine of National Energy Group and WHU-LTS open source data. In the up-sampling test, the CD index, EMD index and HD index reached 11.35×10−3, 5.52×10−3 and 112.31×10−3 respectively.

  • 关键词

    煤矿机器人图像处理自主移动激光雷达点云建图巷道点云上采样算法深度学习

  • KeyWords

    coal mine robots;image processing;autonomous movement;laser radar point cloud mapping;roadway point cloud;up-sampling algorithm;deep learning

  • 基金项目(Foundation)
    国家重点研发计划资助项目(2022YFB4703600)
  • DOI
  • 引用格式
    黄晨烜,王雷. 基于上采样算法的煤矿巷道稀疏点云增稠方法[J]. 煤矿安全,2025,56(3):215−223.
  • Citation
    HUANG Chenxuan, WANG Lei. Thinning point cloud thickening method of mine roadway based on up-sampling algorithm[J]. Safety in Coal Mines, 2025, 56(3): 215−223.
  • 相关文章
  • 图表
    •  
    •  
    • 级联渐进式复合残差自注意力网络总体结构

    图(12) / 表(2)

相关问题
立即提问

主办单位:煤炭科学研究总院有限公司 中国煤炭学会学术期刊工作委员会

©版权所有2015 煤炭科学研究总院有限公司 地址:北京市朝阳区和平里青年沟东路煤炭大厦 邮编:100013
京ICP备05086979号-16  技术支持:云智互联