• 访客 您好
  •  | 
  • 注册
  • 全部
主办单位:煤炭科学研究总院有限公司、中国煤炭学会学术期刊工作委员会
基于经验模态分解线性模型的矿压预测
  • Title

    Mine pressure prediction based on empirical mode decomposition linear model

  • 作者

    朱宇伟王朋飞王慧娴牛强强辛亮

  • Author

    ZHU Yuwei;WANG Pengfei;WANG Huixian;NIU Qiangqiang;XIN Liang

  • 单位

    太原理工大学矿业工程学院

  • Organization
    School of Mining Engineering, Taiyuan University of Technology
  • 摘要

    为保证煤矿安全高效开采,减少顶板事故突发。本研究提出了一种新颖的多变量长时间序列矿压预测模型——经验模态分解线性模型(EMD–Mixer)。与多数固定长度的单一特征矿压预测模型不同,该模型首先引入经验模态分解(EMD)方法将矿压信号中周期性和趋势性分离出来,再通过与长时间预测线性层(LTSF–Linear)组合,形成一个用于提取时间维度特征的模块。此外,设计了时间与通道混合策略,利用处理非线性关系的通道特征模块来处理多变量矿压数据,最后将时间与通道模块的输出使用残差与输入数据相加,得到最终的预测结果。在实验中,将历史窗口设定为36个时间单位,并对预测长度分别为24、36、48和60的不同时间单位进行了测试,结果表明,EMD–Mixer模型在短期至中长期预测范围内均表现出优异的性能和稳定性。将该模型与LTSF–Linear、MTS–Mixer模型以及矿压预测中常用的长短期记忆(LSTM)模型进行了比较,并利用4种评估指标:平均绝对误差(EMAE)、均方误差(EMSE)、对称平均绝对百分比误差(EsMAPE)及绝对系数(R2)对预测结果进行了评价。结果显示,EMD–Mixer模型在所有指标下均展现出更高的预测精确度和预测稳定性。EMD–Mixer模型结构简单,具有较强的泛化能力,能够更有效地适应不同场景下不同级别的多变量矿压数据。为煤矿安全高效生产以及顶板事故的提前预警提供了重要的研究思路。

  • Abstract

    To ensure the safe and efficient extraction of coal mines and reduce sudden roof accidents, this study proposes a novel multivariate long-term sequence mine pressure prediction model—the Empirical Mode Decomposition Linear Model (EMD–Mixer). Unlike most fixed-length single-feature mine pressure prediction models, this model first introduces the Empirical Mode Decomposition (EMD) method to separate periodic and trend components from the mine pressure signals. It then combines these with the Long-Term Forecasting Linear Layer (LTSF–Linear) to form a module for extracting temporal features. Additionally, a time and channel mixing strategy is designed, utilizing a channel feature module to handle multivariate mine pressure data and process nonlinear relationships. The final prediction results are obtained by adding the residuals of the time and channel module outputs to the input data. In the experiments, the historical window was set to 36 time units, and tests were conducted for prediction lengths of 24, 36, 48, and 60 time units. The results indicate that the EMD–Mixer model exhibits excellent performance and stability across short to medium-term prediction ranges. The model was compared with the LTSF–Linear, MTS–Mixer, and the commonly used Long Short-Term Memory (LSTM) model in mine pressure prediction. Four evaluation metrics were used to assess the prediction results: Mean Absolute Error (EMAE), Mean Squared Error (EMSE), Symmetric Mean Absolute Percentage Error (EsMAPE), and R-squared (R2). The results show that the EMD–Mixer model demonstrates higher prediction accuracy and stability across all metrics. The EMD–Mixer model is simple in structure, has strong generalization capabilities, and can more effectively adapt to multivariate mine pressure data of different levels in various scenarios. This provides an important research approach for the safe and efficient production of coal mines and the early warning of roof accidents.

  • 关键词

    矿压预测经验模态分解长期时间序列预测长时间预测线性层时间通道混合策略

  • KeyWords

    mine pressure prediction;empirical mode decomposition;long-term time series forecasting;long-term forecasting linear layer;time and channel mixing strategy

  • 基金项目(Foundation)
    “科技兴蒙”行动重点专项资助项目(2022EEDSKJXM010–3);鄂尔多斯市科技重大专项资助项目(ZD20232306);呼包鄂国家自主创新示范区建设科技支撑资助项目(2023XM08)
  • DOI
  • 相关专题
  • 图表
    •  
    •  
    • EMD分解流程

    图(8) / 表(2)

相关问题

主办单位:煤炭科学研究总院有限公司 中国煤炭学会学术期刊工作委员会

©版权所有2015 煤炭科学研究总院有限公司 地址:北京市朝阳区和平里青年沟东路煤炭大厦 邮编:100013
京ICP备05086979号-16  技术支持:云智互联
累计访问量:27682898,今日访问人数:17067 站长统计