Groundwater pollution risk assessment in typical coal-related industry agglomeration area
周来刘延卓亓增刚王磊孟磊冯启言戎艳青
ZHOU Lai;LIU Yanzhuo;QI Zenggang;WANG Lei;MENG Lei;FENG Qiyan;RONG Yanqing
教育部矿山生态修复工程研究中心中国矿业大学环境与测绘学院中国煤炭地质总局第一勘探局中国矿业大学物联网(感知矿山)研究中心山西省生态环境监测和应急保障中心(山西省生态环境科学研究院)
涉煤产业集聚区污染源数量大且分布集中,容易诱发地下水污染,开展地下水污染风险评价对保护该类地区地下水环境具有重要意义。以山西省某涉煤产业集聚区为研究区,采用DRASTIC与PLEIK模型分别对研究区孔隙水含水层与岩溶水含水层脆弱性进行评价,使用层次分析法(AHP)确定PLEIK模型中各指标权重,并综合污染源荷载与地下水脆弱性来表征研究区地下水污染风险。同时结合研究区地下水采样点水质等级,利用随机森林(RF)分类算法构建地下水污染风险分级预测方法,与叠置指数法的评价结果进行对比。结果表明:①研究区内污染源荷载较高,高污染源荷载区占比约为26.73%,这与涉煤产业污染源分布较为集中的特点有关,在量化污染源荷载时,多个污染源叠加效应明显;②研究区地下水综合脆弱性以中等级为主,中等脆弱性区占比约为82.59%,孔隙水含水层高脆弱区主要位于研究区东部与东南部山前平原地带,岩溶水含水层高脆弱区主要分布在汾河以北岩溶裸露区;③基于叠置指数法所计算出的研究区地下水低、中、高污染风险区面积占比分别为3.55%、59.67%、36.77%,与实际取样点水质等级的一致率为75%;④使用RF预测的地下水污染风险以低风险为主,其分级结果与实际取样点水质的一致率为97.7%,较叠置指数法计算出的结果准确性提高了约22.7%。评价结果以期为研究区地下水污染管控工作提供依据和参考。
The large number and concentrated distribution of pollution sources in coal-related industry agglomeration area can easily induce groundwater pollution, and it is of great significance to carry out the risk assessment of groundwater pollution to protect the groundwater environment in such areas. Taking a coal-related industrial agglomeration area in Shanxi Province as study area, the DRASTIC and PLEIK models were used to evaluate the vulnerability of pore water aquifers and karst water aquifers in the study area, respectively. Analytic Hierarchy Process (AHP) was used to determine the weights of the indicators in the PLEIK model, and the integrated loading of pollutants and the vulnerability of groundwater were used to characterize the risk of groundwater pollution in the study area. At the same time, combined with the water quality level of groundwater sampling points in the study area, the Random Forest (RF) classification algorithm was utilized to construct the groundwater pollution risk classification prediction method, and the evaluation results were compared with those of the superposition index method. The results show that: ① the loading of pollution sources in the study area is high, and the proportion of high pollution source loading area is about 26.73%, which is related to the characteristics of the more concentrated distribution of pollution sources in coal-related industry agglomeration area, and when quantifying the loading of pollution sources, the superposition effect of multiple pollution sources is obvious; ② the comprehensive vulnerability of the groundwater in the study area is dominated by the medium grade, and the proportion of medium vulnerability area is about 82.59%, with the pore-water aquifer high vulnerability area The high vulnerability zone of pore water aquifer is mainly located in the eastern and southeastern part of the study area, and the high vulnerability zone of karst water aquifer is mainly distributed in the karst exposed area north of Fenhe River; ③ the areas of low, medium and high risk zones of groundwater in the study area based on the superposition index method are 3.55%, 59.67% and 36.77%, respectively, and the consistency rate with the water quality level of the actual sampling points is 75%, and the risk of groundwater pollution predicted by the use of RF The predicted risk of groundwater contamination was dominated by low risk, and the correct rate between the grading results and the water quality of the actual sampling points was 97.7%, which improved the accuracy of the results calculated by the stacked index method by about 22.7%. The evaluation results are intended to provide a basis and reference for groundwater pollution control in the study area.
地下水污染风险评价脆弱性评价污染源荷载评价分级预测涉煤产业集聚区
groundwater pollution risk assessment;groundwater vulnerability assessment;pollution source load assessment;classification predict;coal-related industrial agglomeration area
图(0) / 表(5)
主办单位:煤炭科学研究总院有限公司 中国煤炭学会学术期刊工作委员会