-
Title
Study on cracking evolution characteristics of pre-fractured coal and rock mass based on DIC technology
-
作者
汪文勇高明忠张朝鹏邵新星刘强陈海亮
-
Author
WANG Wenyong,GAO Mingzhong,ZHANG Zhaopeng,SHAO Xinxing,LIU Qiang,CHEN Hailiang
-
单位
四川大学水利水电学院水力学与山区河流开发保护国家重点实验室四川大学建筑与环境学院深地科学与工程教育部重点实验室东南大学土木工程学院
-
Organization
1.State Key Lab of Hydraulics and Mountain River Development and Protection,School of Water Resource and Hydropower,Sichuan University,Chengdu ,China;2.MOE Key Lab of Deep Geosciences and Engineering,School of Architecture and Environment,Sichuan University,Chengdu ,China;3.School of Civil Engineering,Southeast University,Nanjing ,China
-
摘要
为了研究煤岩体裂隙网络结构以及表面裂隙演化发展过程,开展了基于采动煤岩体应力路径的三轴加载试验,在应力刚超过峰值应力时停止加载,得到采动应力作用下的预裂煤岩体;然后引入数字图像相关(DIC)技术,并继续单轴加载,观察和记录裂隙演化发展过程;并结合分形几何,计算出不同加载阶段煤岩表面裂隙的分形维数。研究结果表明:在真实采动应力路径下,受围压释放的影响,煤岩承载能力下降超过40%;由于裂隙面的粗糙度不同以及煤岩体非均质性和原生缺陷等,预裂煤岩体除了沿预裂裂隙面继续变形破坏外,还会产生新的次生裂隙;在单轴压缩条件下,预裂煤岩体表面裂隙分形维数由1.12增长到1.60,裂隙演化的整体趋势为缓慢→快速发育→平稳。
-
Abstract
In order to study the cracking network structure and the surface cracking evolution development process of the coal and rock mass,a triaxial loading test was conducted based on the mining stress path of the coal and rock mass.A loading operation was stopped when the stress was just over the peak stress and the pre-fractured coal and rock mass under the mining stress role were obtained.Then the DIC technology was introduced,an uniaxial loading was continued and the cracking evolution development process was observed and recorded.In combination with the fractal geometry,a fractal dimension of the surface cracking on the coal and rock in different loading stage was calculated.The study result showed that under the real mining stress path,with the influence of the surrounding pressure released,the loading capacity of the coal and rock was reduced over 40%.Due to the different roughness of the cracking surface and the heterogeneity and insitu defects,except for the continuous deformation and failure along the pre-fractured cracking surface,the pre-fractured coal and rock mass would occur new secondary cracking.Under the condition of the uniaxial compression,the fractal dimension of the cracking on the surface of the coal and rock mass would be increased from 1.12 to 1.60,and the completed tendency of the cracking evolution would be slow to rapid developed to steady stable.
-
关键词
煤岩裂隙采动应力路径煤体预裂煤体变形破坏
-
KeyWords
cracks of coal and rock mass;mining stress path;coal mass presplitting;deformation and failure of coal mass
-
基金项目(Foundation)
国家自然科学基金面上资助项目(51674170);国家重点研发计划资助项目(2016YFC0600701);