• 论文
主办单位:煤炭科学研究总院有限公司、中国煤炭学会学术期刊工作委员会
动态权-集对分析模型在矿井突水水源识别中的应用
  • Title

    Application of dynamic weight-set pair analysis model in mine water inrush discrimination

  • 作者

    王甜甜靳德武刘基杨建王心义赵 伟

  • Author

    WANG Tiantian1,2,3 ,JIN Dewu2,3 ,LIU Ji2,3 ,YANG Jian2,3 ,WANG Xinyi4 ,ZHAO Wei4

  • 单位

    煤炭科学研究总院中煤科工集团西安研究院有限公司陕西省煤矿水害防治技术重点实验室河南理工大学 资源环境学院

  • Organization
    1. China Coal Research Institute, Beijing   100013, China; 2. Xi’ an Research Institute, China Coal Technology & Engineering Group Corp. , Xi’ an  710077,China; 3. Shaanxi Key Laboratory of Prevention and Control Technology for Coal Mine Water Hazard,Xi’an  710077,China; 4. Institute of Esources & Environment,Henan Polytechnic University,Jiaozuo  454000,China
  • 摘要

    矿井突水是煤矿生产的主要威胁之一,准确判定矿井突水水源是突水灾害防控的重要环节。 为进行矿井突水水源识别,基于动态权和集对分析理论,针对葫芦素井田 5 种不同含水层中所 提取的 53 组水样,选取 K+ +Na+ ,Ca2+ ,Mg2+ ,Cl- ,SO2-4 及 HCO-3 六项水化学指标作为识别因子,确立 了其水源识别区间,构建了矿井突水水源识别的数学模型。然后利用 10 组已知矿井水样验证水源 识别模型,最后使用该模型对 2015-04-26 葫芦素井田 21102 工作面突水进行水源识别。 结果表 明:动态权重综合考虑主客观权重,既削弱了人为因素的影响,又考虑了识别指标的实际情况,权重 赋值合理。利用动态权计算的 6 项识别因子中,SO2-4 ,Cl- ,K+ +Na+的权重值分别为 0.38,0.25 及 0.20,远大于其他 3 项指标且其权重之和占总权重的 83% ,在突水水源识别中起决定性作用。利用 10 组已知矿井水样验证动态权-集对分析水源识别模型,9 组识别结果与实际情况完全吻合,仅有 1 组第四系水样识别结果与实际不符,为建模时第四系样本数据少,待测水样超出识别区间所 致。 使用已建模型识别葫芦素井田 21102 工作面突水水源,判别结果与实际完全一致,因 21102 工作面突水几乎均来自直罗组与白垩系,而直罗组与白垩系建模样本量大,所建识别区间合适。 大量 的水质数据及准确的识别区间是动态权-集对分析模型进行准确突水水源识别的基础与保障。

  • Abstract

    Water inrush seriously restricts the mine safe production,and identifica water inrush sources quickly impor-tant for the prevention and control of mine water inrush. This research was carried out to build a mine water inrush i-dentification model based on dynamic weight-set pair. Six parameters including K+ +Na+ ,Ca2+ ,Mg2+ ,Cl- ,SO24- and HCO- were elected as recognition factors and source identification ranges were determined according to 53 groundwater samples extracted from five water sources at Hulusu coalfield. Then,10 mine water samples with definite source to test dynamic weight-set pair model. At last,this established model was used to predict mine water inrush of 21102 working face of Hulusu coalfield on April 26,2015. The results indicate that dynamic weight method is reasonable because sub-jective weights and objective weights are taken into account,simultaneously. On one hand,the influence of human fac-tors is weakened,and on the other hand the actual situation of the identification parameters is considered. The weights of SO24- ,Cl- ,and K+ +Na+ are 0. 38,0. 25 and 0. 20 using dynamic weight method much higher than other parameters weights,and the sum of weights account for 83% of the total,indicating their conclusive roles in the mine water inrush identification. The verification results of 9 groups of mine water samples are entirely consistent with the actual type. Only one Quaternary water sample identification results inconsistent with the reality,this is because there are few Qua-ternary samples in modeling and the samples to be tested exceed the recognition interval. the prediction result of 21102 working face of Hulusu coalfield is consistent with actual mine water inrush result. This is because almost all water in-rushes of 21102 working face comes from Zhiluo and Cretaceous aquifer. large number of Zhiluo and Cretaceous groundwater samples are used to build model to establish appropriate identification intervals. Dynamic weight-set pair model should be established on the basis of abundant water quality data to ensure accurate identification ranges and valid water inrush source.

  • 关键词

    突水水源识别水化学指标动态权集对分析

  • KeyWords

    identification of mine water inrush source;water chemical parameters;dynamic weight;set pair analysis

  • DOI
  • Citation
    WANG Tiantian,JIN Dewu,LIU Ji,et al. Application of dynamic weight-set pair analysis model in mine water inrush discrimination[J]. Journal of China Coal Society,2019,44(9):2840-2850.
  • 相关文章
  • 相关专题
  • 图表
    •  
    •  
    • 改进集对分析分区解释

    图(5) / 表(0)

相关问题

主办单位:煤炭科学研究总院有限公司 中国煤炭学会学术期刊工作委员会

©版权所有2015 煤炭科学研究总院有限公司 地址:北京市朝阳区和平里青年沟东路煤炭大厦 邮编:100013
京ICP备05086979号-16  技术支持:云智互联