• 全部
主办单位:煤炭科学研究总院有限公司、中国煤炭学会学术期刊工作委员会
基于超像素粒化与同质图像粒聚类的矿井人员图像分割方法
  • Title

    Segmentation method for mine personnel images based on superpixel granulation and clustering of homogenous image granules

  • 作者

    李晓宇杨维刘斌范伟强张向阳

  • Author

    LI Xiaoyu,YANG Wei,LIU Bin,FANG Weiqiang,ZHANG Xiangyang

  • 单位

    中国矿业大学(北京) 机电与信息工程学院北京交通大学 电子信息工程学院国家能源集团 宁夏煤业有限责任公司双马煤矿

  • Organization
    School of Mechanical Electronic & Information Engineering,China University of Mining and Technology (Beijing);School of Electronic & Information Engineering,Beijing Jiaotong University;Ningxia Coal Industry Limited Liability Company Shuangma Coal Mine,China Energy Group,Yinchuan
  • 摘要

    矿井人员图像分割是实现煤矿井下人员检测、行为识别、视频定位跟踪等技术的重要任务之一。然而,由于矿井下环境特殊,常规图像分割方法均难以满足对井下人员的准确分割要求。为解决矿井人员图像的分割问题,提出一种基于超像素粒化及同质图像粒聚类的分割方法,能够适用于煤矿井下多种场景的人员图像。首先,使用简单线性迭代聚类(Simple Linear Iterative Clustering,SLIC)模型将井下人员图像初始分割为超像素单元,并通过测量离线样本图像中所标记人员像素点与超像素之间的RGB相似度值判定人员超像素。其次,由邻居超像素辅助检测欠分割人员超像素并将其彻底分割为2个子超像素单元,选择其中之一的精英人员超像素并提取其纹理和灰度特征。接着,将具有最相似图像特征的邻接精英人员超像素定义为同质图像粒,同质图像粒相互融合并聚类形成具有特定语义信息的同质人员区域。最后,由所有同质人员区域共同构成完整的人员区域,并实现人员区域与图像背景的分离。通过对煤矿井下4种场景下的人员图像进行算法性能验证,实验结果表明:超像素粒化算法的F-Measure值分别较对比算法平均值高出2.11%,3.36%,13.16%,6.82%,同质人员图像粒聚类算法精度值分别达到99.0%,100%,94.4%和93.75%,并且所提分割方法对井下4种不同场景中的人员图像均具有较强的鲁棒性和较好的分割效果。

  • Abstract
    Image segmentation of mine personnel is one of the important tasks to realize the technology of personnel detection,behavior recognition,video locating and tracking.However,due to the special underground environment in coal mine,it is difficult for conventional methods to meet the requirement of accurate segmentation of underground personnel.To solve the segmentation problem of personnel image in coal mine,a segmentation method based on superpixel granulation and the clustering of homogenous image granules is proposed,which is appropriate for the personnel images in various scenarios.Firstly,the simple linear iterative clustering (SLIC) model is employed to initially segment the personnel image in coal mine into superpixels units,moreover,the personnel superpixels are identified by the RGB similarity relationship between the superpixels and the marked personnel pixels in sample images.Secondly,the under-segmented personnel superpixels are detected and thoroughly segmented into two with the guidance of their neighbor superpixels,one is elite personnel superpixels and whose texture and grayscale features are extracted.Thirdly,the adjacent elite personnel superpixels with the most similar image features are defined as homogenous image granules,which merge with each other and cluster to generate a homogenous personnel region with specific semantic information.Finally,all the homogenous personnel regions together constitute the whole personnel region,and the personnel region is separated from the background.Personnel images of underground coal mine with four different scenarios are used to verify the performance of the proposed algorithm.The experimental results show that the F-measure value of the proposed algorithm of superpixel granulation is 2.11%,3.36%,13.16%,and 6.82% higher than the average value of the comparison algorithm,and the accuracy value of the proposed algorithm of clustering of homogeneous personnel image granules reaches up to 99.0%,100%,94.4% and 93.75% respectively.In addition,the proposed segmentation method has strong robustness and good segmentation effect for all personnel images in four different mine scenarios.
  • 关键词

    矿井人员图像分割超像素粒化同质图像粒精英人员超像素同质人员区域

  • KeyWords

    mine personnel;image segmentation;superpixel granulation;homogenous image granules;elite personnel superpixels;homogenous

  • 基金项目(Foundation)
    国家自然科学基金资助项目(51874299)
  • 文章目录

    1 人员图像分割算法框架

    2 基于SLIC的人员图像超像素粒化

      2.1 m值选择

      2.2 人员超像素判定

    3 同质人员图像粒聚类 

    4 实验结果及分析

      4.1 SLIC 粒化与欠分割人员超像素检测

      4.2 MDD-RGB 二次分割

      4.3 HIGC 同质图像粒聚类

    5 结论

  • 引用格式
    李晓宇,杨维,刘斌,等.基于超像素粒化与同质图像粒聚类的矿井人员图像分割方法[J].煤炭学报,2021,46(4):1341-1354.
    LI Xiaoyu,YANG Wei,LIU Bin,et al.Segmentation method for mine personnel images based on superpixel granulation and clustering of homogenous image granules[J].Journal of China Coal Society,2021,46(4):1341-1354.
  • 图表
    •  
    •  
    • 算法性能均值对比

    图(14) / 表(0)

相关问题

主办单位:煤炭科学研究总院有限公司 中国煤炭学会学术期刊工作委员会

©版权所有2015 煤炭科学研究总院有限公司 地址:北京市朝阳区和平里青年沟东路煤炭大厦 邮编:100013
京ICP备05086979号-16  技术支持:云智互联