• 论文
主办单位:煤炭科学研究总院有限公司、中国煤炭学会学术期刊工作委员会
考虑截齿损耗的多传感信息融合煤岩界面感知识别
  • Title

    Coal rock interface recognition based on multi sensor information fusion considering pick wear

  • 作者

    王海舰黄梦蝶高兴宇卢士林张强

  • Author

    WANG Haijian,HUANG Mengdie,GAO Xingyu,LU Shilin,ZHANG Qiang

  • 单位

    桂林电子科技大学 机电工程学院山东科技大学 机械电子工程学院

  • Organization
    College of Mechanical and Electrical Engineering,Guilin University of Electronic Technology; College of Mechanical and Electrical Engineering,Shandong University of Science and Technology
  • 摘要

    为了实现采煤机开采过程中煤岩界面的精准识别,提出一种基于多传感信息融合的煤岩界面感知识别方法。考虑截齿损耗对采煤机截割特征信号的影响,测试采煤机截齿处于新齿、轻微磨损、一般磨损以及严重磨损4种状态下,截割不同比例煤岩过程中的振动信号、电流信号、声发射信号以及红外闪温信号,建立截齿不同磨损程度下的多截割信号特征样本库。根据相邻截煤比各截割特征信号的模糊特征,以最小模糊熵为优化目标,采用自适应权重粒子群算法优化求解各截割特征信号的隶属度函数。构建基于D-S理论的“与”决策准则,实现对煤岩界面的精准识别。通过分析截煤比识别结果信度值的分布特征及趋向性,确定截煤比识别结果在不同截煤比的信度值与实际煤岩比例的匹配关系,利用识别结果的信度值对煤岩轨迹进行进一步的优化。根据实验结果可以得到:① 截齿磨损程度对煤岩各截割特征信号的变化影响显著,截齿不同磨损程度下各截割特征信号的最优隶属度函数呈现动态变化;② 煤岩界面轨迹的识别结果逼近具有最大信度的截煤比,且对于次大信度截煤比具有一定程度的趋向性;③ 基于单一优化隶属度函数进行隶属度求解及融合识别,煤岩界面识别精度随着截齿损耗的加剧大幅度下降,最大下降幅度达到43.04%;④ 考虑截齿损耗的多传感信息融合识别模型克服了截齿损耗对信号的误差影响,对煤岩界面具有更高的识别精度,识别误差浮动在1.54%范围内。

  • Abstract
    To accurately recognize the coal rock interface in the cutting process of a shearer,a coal rock interface recognition method based on multisensor information fusion is proposed.Considering the influence of pick wear on the cutting feature signals of the shearer,the vibration,current,acoustic emission and infrared flash temperature signals are tested under four conditions new pick,slight wear,general wear and severe wear,while cutting coal and rock with different proportions.Then,the feature sample databases of multi signal under different peak wear degrees are built.According to the fuzzy characteristics of each feature signal between adjacent coal cutting proportions,the membership function of each feature signal is optimized by adaptive weight particle swarm optimization to obtain a minimum fuzzy entropy.Moreover,an “AND” decision criteria based on Dempster Shafer (DS) theory is constructed to realize the accurate recognition of coal rock interface.Finally,the matching relation between the reliability values of the recognized coal cutting proportions and the actual coal rock proportion is determined by analyzing the distribution and trend of the reliability values,which is capable to further optimize the coal rock trajectory based on the reliability values of the recognition results.According to the experimental results,the following conclusions are obtained:① The wear degree of picks has a significant effect on the cutting feature signals of coal and rock,and the optimal membership functions change dynamically with different pick wear degrees.② The recognition results of coal rock interface approach the coal cutting proportion with a maximum reliability,and have a certain tendency to the coal cutting proportion with second largest reliability.③ While the membership calculation and fusion recognition are carried out based on single optimization membership function,the recognition accuracy of coal rock interface decreases greatly with the increase of pick wear degree,and the maximum decline reaches 43.04%.④ The multi sensor information fusion recognition model,considering the pick wear,overcomes the influence of pick wear on signals’error.Higher recognition accuracy is achieved by the pro-posed method for coal rock interface,and the error is within 1.54%.
  • 关键词

    煤岩识别截齿损耗模糊熵粒子群算法D-S理论

  • KeyWords

    coal rock recognition;pick loss;fuzzy entropy;particle swarm optimization;D-S theory

  • 基金项目(Foundation)
    国家自然科学基金面上资助项目(5177041303);广西自然科学基金联合资助培育资助项目(2018GXNSFAA294081);广西科技基地和人才专项资助项目(桂科AD18281051)
  • 文章目录

    1 多信息融合煤岩界面识别实验台

       1.1 煤岩截割特征信号分析

       1.2 煤岩界面识别实验台搭建

       1.3 煤岩试件的制备

    2 考虑截齿损耗的隶属度函数优化

       2.1 截齿损耗对截割特征信号影响分析

       2.2 不同磨损程度截齿截割特征信号分析

       2.3 基于最小模糊熵的隶属度函数优化

    3 基于D-S的煤岩界面融合识别

       3.1 基本概率分配函数

       3.2 D-S证据理论信息融合规则

       3.3 D-S证据理论融合决策准则

       3.4 基于识别结果可信度的截煤比识别优化

    4 实验验证与精度分析

       4.1 实验分析

       4.2 工业性实验结果与精度分析

    5 结论

  • 引用格式
    王海舰,黄梦蝶,高兴宇,等.考虑截齿损耗的多传感信息融合煤岩界面感知识别[J].煤炭学报,2021,46(6):1995-2008.
    WANG Haijian,HUANG Mengdie,GAO Xingyu,et al.Coal rock interface recognition based on multi sensor information fusion considering pick wear[J].Journal of China Coal Society,2021,46(6):1995-2008.
  • 图表
    •  
    •  
    • 现场振动信号实测

    图(20) / 表(0)

相关问题

主办单位:煤炭科学研究总院有限公司 中国煤炭学会学术期刊工作委员会

©版权所有2015 煤炭科学研究总院有限公司 地址:北京市朝阳区和平里青年沟东路煤炭大厦 邮编:100013
京ICP备05086979号-16  技术支持:云智互联