-
作者
温昕董立杨洁李鹤纯相洁郭浩陈俊杰
-
单位
太原理工大学信息与计算机学院电子科技大学生命科学与技术学院
-
摘要
基于深度学习提出一种新的流体智力预测模型,并在特征可解释性上进行了初步探索。新方法的核心思想是先通过空间自编码机分别对局部功能连接指标、局部功能连接密度和神经活动的四维时空一致性进行特征自动学习获得时空间特征,然后结合深层神经网络与集成学习对个体流体智力评分进行预测。最后,利用皮尔逊相关系数与平均绝对误差考察该模型的个体流体智力评分预测表现。结果表明,本研究提出的方法在使用个体局部功能连接预测流体智力中,预测值与真实值之间的平均绝对误差为:4.1±3.2,皮尔逊相关系数达0.55(P=1.9×10-18).相比于CPM模型(Connectome Predictive Model,连接组学预测模型)与降维-预测组合方法,本文提出的新方法表现最好。与此同时,特征的可视化有效地反映了与流体智力相关的大脑功能活动空间模式,表明本文提出的方法能够帮助我们理解年龄相关的大脑功能变化模式,具有较好的应用前景。
-
关键词
功能磁共振自编码机深层神经网络特征可解释流体智力预测
-
基金项目(Foundation)
国家自然科学基金(81861128001,81701778,61672374);四川省科技计划项目(2018JZ0073,2019YJ0179);
-
文章目录
1 实验数据与方法
1.1 数据预处理与局部功能连接计算
1.2 集成深度预测模型
2 结果
2.1 空间自编码机的参数选择
2.2 预测结果
2.3 lFCD与FOCA的空间图及其重要度
2.4 空间自编码机
2.5 认知功能相关的空间模式
2.6 不足与展望
3 结论
-
引用格式
温昕,董立,杨洁,李鹤纯,相洁,郭浩,陈俊杰.基于深度学习的fMRI个体流体智力预测方法[J].太原理工大学学报,2020,51(06):831-837.
-
相关文章