• 论文
主办单位:煤炭科学研究总院有限公司、中国煤炭学会学术期刊工作委员会
基于AI的煤矿视频智能分析技术
  • Title

    Application of video intelligent analysis technology in coal mine based on computer vision

  • 作者

    刘孝军王飞

  • Author

    LIU Xiaojun;WANG Fei

  • 单位

    国能神东煤炭集团有限责任公司

  • Organization
    CHN Energy Group Shendong Coal Group Co. Ltd
  • 摘要
    现代化煤矿经过自动化改造、可视化升级之后,井下工业视频的覆盖率趋于饱和,同时产生了海量视频资源,但是视频资源的利用仍旧局限于对现场环境与设备的监视和事故追查的回放。为深度开发利用煤矿工业视频资源,提升矿井智能化水平,结合煤矿井下业务实际需求,设计了视频资源开发应用场景。根据煤矿带式输送机运输系统易发生故障点位监控和矿井生产计量的需求,采用基于单目视觉的视觉特征建模抽取技术和基于多目视觉的视觉特征建模抽取技术,设计了带式输送机运输异物识别、卸载部堆煤识别、煤量识别、跑偏识别等场景;根据煤矿井下易发生火灾区域监测业务需求,设计了区域烟雾火灾识别场景;根据煤矿井下作业人员行为监管业务需求,设计了作业人员违章行为识别场景。基于AI的视频分析功能对煤矿工业视频的深度开发利用,可以剔除大量垃圾数据,保留有效数据,缓解视频数据流量给矿井骨干工业环网带来的传输压力;通过计算机智能识别分析判断,替代巡检人员的部分职能,减轻井下工作人员劳动强度,在无需额外增加感知设备的情况下,提高矿井安全生产能力。
  • Abstract

    After the automatic transformation and visualization upgrading of modern coal mines, the coverage rate of underground industrial video tends to be saturated, and massive video resources are generated at the same time. However, the utilization of video resources is still limited to the monitoring of site environment and equipment and the replay of accident tracing. In order to further develop and utilize the video resources of coal mine industry and improve the intelligent level of mine, combined with the actual needs of underground coal mine business, the development and application scenarios of video resources are designed. According to the requirements of fault point monitoring and mine production measurement in the transportation system of coal mine belt conveyor, using the vision feature modeling extraction technology based on monocular vision and the vision feature modeling extraction technology based on multiocular vision, the scene of foreign body identification, coal load identification, coal volume identification, off-track identification of belt conveyor was designed. According to the monitoring requirements of fire prone area in underground coal mine, the scene of regional smoke fire identification is designed. According to the operation requirements of the underground coal mine operators’ behavior supervision, the identification scene of operators’ illegal behavior is designed. The in-depth development and utilization of the video of coal mine industry based on AI-based video analysis function can eliminate a lot of garbage data, retain effective data, and relieve the transmission pressure brought by the video data flow to the mine backbone industrial ring network. Through computer intelligent identification, analysis and judgment, it can replace part of the functions of inspection personnel, reduce the labor intensity of underground workers, and improve the safety production capacity of mine without adding additional sensing equipment.

  • 关键词

    视频资源事故追查智能化应用场景

  • KeyWords

    video resources;accident tracing;intelligent;application scenarios

  • DOI
  • 引用格式
    刘孝军,王飞.基于AI的煤矿视频智能分析技术[J].煤炭科学技术,2022,50(S2):260-264.DOI:10.13199/j.cnki.cst.2022-1939.
  • Citation
    LIU Xiaojun,WANG Fei. Application of video intelligent analysis technology in coal mine based on computer vision[J]. Coal Science and Technology,2022,50(S2):260−264
  • 图表
    •  
    •  
    • 带式输送机运输异物识别流程

    图(2) / 表(0)

相关问题

主办单位:煤炭科学研究总院有限公司 中国煤炭学会学术期刊工作委员会

©版权所有2015 煤炭科学研究总院有限公司 地址:北京市朝阳区和平里青年沟东路煤炭大厦 邮编:100013
京ICP备05086979号-16  技术支持:云智互联