• 全部
主办单位:煤炭科学研究总院有限公司、中国煤炭学会学术期刊工作委员会
基于BiLSTM+Attention模型的煤矿事故隐患自动分类研究
  • Title

    Research on automatic classification of hidden dangers of coal mine based on BiLSTM+Attention model

  • 作者

    赵法森刘飞翔李泽荃李靖

  • Author

    ZHAO Fasen;LIU Feixiang;LI Zequan;LI Jing

  • 单位

    中国国际工程咨询有限公司华北科技学院矿山安全学院华北科技学院经济管理学院中国矿业大学(北京)能源与矿业学院

  • Organization
    China International Engineering Consulting Corporation
    School of Mine Safety , North China Institute of Science and Technology
    School of Economics and Management, North China Institute of Science and Technology
    School of energy and mining, China University of Mining and Technology -Beijing
  • 摘要
    煤矿事故隐患排查是“三位一体”安全生产标准化体系建设的重要基础,大部分企业已经建立并利用安全生产信息系统开展隐患排查治理工作,但相关事故隐患数据并未得到充分利用。以新版《煤矿安全规程》为类别划分标准,构建了17个隐患大类和109个隐患小类的分类体系,作为煤矿安全隐患数据的样本标签;利用BiLSTM模型结合Attention机制对煤矿事故隐患数据进行了双层类别体系的文本分类,并以BERT模型作为基线进行了对比研究。计算结果表明:在隐患大类分类试验中,对于整体的分类结果,BiLSTM+Attention模型在准确率、精准率、召回率和F1值上均高于BERT模型2个百分点;对于各隐患类别的分类结果,以F1值作为主要衡量标准,BiLSTM+Attention模型的分类性能最高达到91%,普遍高于BERT模型1%至4%不等。在隐患小类分类试验中,BiLSTM+Attention模型的分类性能最高达到99%,同样普遍高于BERT模型1%到10%不等。可以看出,基于BiLSTM+Attention模型的煤矿事故隐患分类算法具有显著的分类效果,可以为煤矿事故隐患排查相关信息系统提供快速录入的便捷性应用。
  • Abstract

    The investigation of hidden dangers of coal mine is an important basis for the construction of the “Three in One” safety production standardization system. Most coal mines have established and used the safety production information system to carry out the investigation and management of hidden dangers, but the relevant data of hidden dangers of accidents has not been fully utilized. Taking the new edition of Coal Mine Safety Regulations as the classification standard, the classification system of 17 hidden danger large classes and 109 hidden danger small classes is constructed as the sample labels of the hidden danger data of coal mine, BiLSTM model combined with Attention mechanism is used to conduct text classification of coal mine accident hidden danger data in a two-layer classification system, and BERT model is used as the baseline for comparative study. In the hidden danger large class classification experiment, for the whole classification results, it shows that BiLSTM+Attention model has 2 percentage points higher in accuracy, precision,recall and F1 value than BERT model in the hidden danger classification experiment. For the classification results of each hidden dangers, with F1 value as the main measurement standard, the classification performance of BiLSTM+Attention model is up to 91%, which is generally 1% to 4% higher than BERT model. In the hidden danger small class classification experiment, the classification performance of BiLSTM+Attention model is up to 99%, which is also generally 1% to 10% higher than BERT model. It can be seen that the coal mine accident hidden danger classification algorithm based on BiLSTM+Attention model has a significant classification effect, which can provide a convenient application for fast entry for the information system of coal mine accident hidden danger investigation.

  • 关键词

    BiLSTM+Attention模型自然语言处理煤矿事故隐患文本分类

  • KeyWords

    BiLSTM + Attention model;natural language processing;hidden dangers of coal mine;text classification

  • DOI
  • 引用格式
    赵法森,刘飞翔,李泽荃,李靖.基于BiLSTM+Attention模型的煤矿事故隐患自动分类研究[J].煤炭科学技术,2022,50(S2):210-217.DOI:10.13199/j.cnki.cst.2022-1130.
  • Citation
    ZHAO Fasen,LIU Feixiang,LI Zequan,et al. Research on automatic classification of hidden dangers of coal mine based on BiLSTM+Attention model[J]. Coal Science and Technology,2022,50(S2):210−217
  • 图表
    •  
    •  
    • BiLSTM+Attention模型结构

    图(2) / 表(0)

相关问题

主办单位:煤炭科学研究总院有限公司 中国煤炭学会学术期刊工作委员会

©版权所有2015 煤炭科学研究总院有限公司 地址:北京市朝阳区和平里青年沟东路煤炭大厦 邮编:100013
京ICP备05086979号-16  技术支持:云智互联