• 论文
主办单位:煤炭科学研究总院有限公司、中国煤炭学会学术期刊工作委员会
基于蒙特卡罗的硫化氢吸附−扩散机理
  • Title

    Research on the adsorption-diffusion mechanism of hydrogen sulfide based on Monte Carlo simulation

  • 作者

    贾进章邢迎欢李斌贾鹏吴禹默杨强王东明

  • Author

    JIA Jinzhang;XING Yinghuan;LI Bin;JIA Peng;WU Yumo;YANG Qiang;WANG Dongming

  • 单位

    辽宁工程技术大学 安全科学与工程学院矿山热动力灾害与防治教育部重点实验室(辽宁工程技术大学)沈阳理工大学 环境与化学工程学院 辽宁 沈阳 110180

  • Organization
    College of Safety Science and Engineering, Liaoning Technical University
    Key Laboratory of Mine Thermodynamic Disasters and Control of Ministry of Education (Liaoning Technical University)
    School of Environmental and Chemical Engineering, Shenyang Ligong University
  • 摘要

    为了明确硫化氢(H2S)在煤中吸附扩散的微观动力学机理,揭示不同温度、压力对煤吸附H2S分子吸附扩散特性的影响机制,基于巨正则蒙特卡罗(GCMC)、分子动力学(MD)和密度泛函理论(DFT)方法,利用Material Studio软件研究了温度在273.15~313.15 K、压力1~1 000 kPa时H2S在气肥煤大分子模型中的吸附扩散特征。结果表明:温度由273.15 K升至313.15 K时,H2S的饱和吸附量由38.34 mL/g降至31.85 mL/g,降低了16.93%,当压力为1 kPa时,温度对吸附量的影响最为敏感。温度为293.15 K时,压力由1 kPa升至1 000 kPa时,最可几相互作用能由−39.391 kJ/mol升至−34.301 kJ/mol,随着压力的增加,最可几相互作用能先快速增加,后缓慢增加。在吸附H2S过程中,H2S的等量吸附热在36.63~41.43 kJ/mol内,为物理吸附,等量吸附热随着吸附量的增加呈现出负指数变化;H2S的吉布斯自由能ΔG为−3.57~−24.57 kJ/mol,吸附熵ΔS为−0.126~−0.194 8 kJ/(mol·K),随吸附量升高ΔG和ΔS的绝对值线性降低,H2S的吸附自发性和系统的混沌程度均降低。H2S与气肥煤的相互作用能为−492.47~−3 390.95 kJ/mol,以范德华能为主,占总能量的58.67%,以静电能为辅,占41.33%,随着吸附量的增加,相互作用能绝对值增加,吸附量与相互作用能的变化具有一致性。H2S与羧基的相互作用最强,羟基次之,H2S在—OH、—COOH、—C=O周围存在双层吸附。温度由273.15 K升至313.15 K,H2S分子的扩散系数由1.066×10−10 m2/s升至2.025×10−10 m2/s,温度升高会导致原本闭合的孔吼孔道打开,增加裂隙的连通性,温度升高,增加H2S分子平均自由程,使得H2S扩散能力增强,H2S扩散活化能为11.206 kJ/mol。H2S相对体积分数分布呈现多峰结构,H2S在气肥煤大分子模型中呈层状结构分布。H2S的极限吸附热为42.898 kJ/mol,H2S与煤体上—OH、—COOH、—C=O活性基团产生氢键作用,H2S在吸附初期存在微弱的化学吸附。

  • Abstract

    In order to clarify the microscopic dynamics mechanism of hydrogen sulfide (H2S) adsorption and diffusion in coal, and to reveal the influence mechanism of different temperatures and pressures on the molecular adsorption and diffusion characteristics of coal adsorbed H2S, based on the Giant Canonical Monte Carlo (GCMC), Molecular Dynamics (MD), and Density Functional Theory (DFT) methods, the adsorption-diffusion characteristics of H2S in the gas-fertilized coal macromolecule model at temperatures ranging from 273.15 K to 313.15 K and pressures ranging from 1 to 1 000 kPa were investigated using Material Studio software. The results showed that the saturated adsorption of H2S decreased from 38.34 mL/g to 31.85 mL/g at an increase in temperature from 273.15 K to 313.15 K, which is a 16.93% decrease. The effect of temperature on adsorption is most sensitive when the pressure is 1 kPa. The most significant interaction energy increased from −39.391 kJ/mol to −34.301 kJ/mol when the pressure was increased from 1 kPa to 1 000 kPa at a temperature of 293.15 K. With the pressure increased, the most significant interaction energy increased first rapidly and then slowly. During the adsorption of H2S, the isocratic heat of adsorption of H2S was in the range of 36.63−41.43 kJ/mol, which is a physical adsorption. The isocratic heat of adsorption showed a negative exponential change with increasing adsorption volume. The Gibbs free energy ΔG of H2S was from −3.57 to −24.57 kJ/mol, and the entropy of adsorption ΔS was from −0.126 to −0.194 8 kJ/(mol·K). The absolute values of ΔG and ΔS linearly decreased with increasing adsorption amount, and the adsorption spontaneity of H2S and the chaos of the system decreased. The interaction energy of H2S with gas-fertilized coal was ranged from −492.47 to −3 390.95 kJ/mol, which was dominated by van der Waals’ energy accounting for 58.67% of the total energy, and supplemented by electrostatic energy accounting for 41.33%. As the adsorption capacity increased, the absolute value of interaction energy increased, and the changes in adsorption capacity and interaction energy were consistent. H2S interacted most strongly with the carboxyl group, followed by the hydroxyl group. Double layer adsorption of H2S occurred around —OH, —COOH, —C=O. The temperature was increased from 273.15 K to 313.15 K. The diffusion coefficient of H2S molecules was increased from 1.066×10−10 m2/s to 2.025×10−10 m2/s, and the activation energy of diffusion was 11.206 kJ/mol. An increase in temperature can lead to the opening of previously closed pores and channels, increasing the connectivity of cracks. As the temperature rises, it increases the average free path of H2S molecules, enhancing their diffusion ability. The limiting heat of adsorption of H2S was 42.898 kJ/mol. The H2S concentration distribution showed a multi-peak structure, and H2S was distributed in a laminar structure in the gas-fertilized coal macromolecule model. H2S had hydrogen bonding with —OH, —COOH, and —C=O reactive groups on the coal body, and there was a weak chemisorption of H2S in the early stage of adsorption.

  • 关键词

    硫化氢吸附−扩散巨正则蒙特卡罗分子模拟吸附机理

  • KeyWords

    hydrogen sulfide;adsorption-diffusion;Giant Canonical Monte Carlo;molecular simulation;adsorption mechanism

  • 基金项目(Foundation)
    国家自然科学基金资助项目(52174183,52374203)
  • DOI
  • 引用格式
    贾进章,邢迎欢,李斌,等. 基于蒙特卡罗的硫化氢吸附−扩散机理[J]. 煤炭学报,2024,49(2):845−864.
  • Citation
    JIA Jinzhang,XING Yinghuan,LI Bin,et al. Research on the adsorption-diffusion mechanism of hydrogen sulfide based on Monte Carlo simulation[J]. Journal of China Coal Society,2024,49(2):845−864.
  • 图表

    Table1

    密度模拟参数
    参数 设置 参数 设置
    任务 建造 力场 Dreiding
    质量 中等 电荷 力场分配
    密度/(g·cm−3) 1.14 静电能 基于原子
    温度/K 298 范德华能 基于原子

    Table2

    H2S的物理性质
    气体 形状 沸点/K 动力学直径/nm 极化率/
    (10−40 C·m2·V−1)
    偶极矩/
    (10−30 C·m)
    四极矩/
    (10−44 C·m2)
    临界压力
    Pc/MPa
    临界温度
    Tc/K
    偏心因子
    ω
    H2S 折线型 212.45 0.36 4.05 3.67 5.17 8.94 373.2 0.109

    Table3

    吸附模拟参数设置
    参数 设置 参数 设置
    任务 固定压力/等温吸附 生产步 2×107
    质量 自定义 电荷 力场分配
    力场 Dreiding 静电能 埃瓦尔德
    平衡步 1×107 范德华能 基于原子
    埃瓦尔德精度/
    (kJ·mol−1
    0.004 18 截断距离/mm 1.25
    交换 0.39 构象异构物 0.2
    旋转 0.2 转变 0.2

    Table4

    气肥煤大分子模型吸附和H2S气体的Langmuir-Freundlich常数
    系统 温度/K VL/(mL·g−1) K m R2
    气肥煤-H2S 273.15 48.396 00 0.200 63 2.315 565 0.988 4
    283.15 48.562 64 0.144 33 2.219 017 0.992 4
    293.15 45.105 62 0.114 34 1.993 859 0.995 8
    303.15 40.520 03 0.085 61 1.748 557 0.985 2
    313.15 38.635 43 0.065 71 1.645 089 0.999 6

    Table5

    弛豫过程参数设置
    参数 设置 参数 设置
    任务 动力学 总模拟时间/ps 3000
    质量 自定义 电荷 力场分配
    力场 Dreiding 静电能 埃瓦尔德
    系综 NVT 范德华能 基于原子
    埃瓦尔德精度/(kJ·mol−1) 0.00418 阶段距离/nm 1.25
    温度/K 293.15 时间步长/fs 1

    Table6

    径向分布函数峰值分布特征参数
    官能团 截断
    距离/nm
    第1峰值
    位置/nm
    第1峰值
    羰基 0.1689 0.2083 1.965
    羧基 0.1863 0.2024 2.869
    羟基 0.1712 0.2049 2.757
    噻吩 0.2116 0.2526 0.973
    吡啶 0.2093 0.3524 1.182
    吡咯 0.1929 0.2228 1.355
    苯环 0.2187 0.4437 1.191
    脂肪烃 0.2403 0.4448 1.377

    Table7

    不同官能团吸附前后静电势
    官能团 吸附前 吸附后


    羟基




    羧基





    羰基






    吡啶






    吡咯





    噻吩











    脂肪烃

    H2S

    Table8

    H2S在不同温度下的扩散系数
    温度/K 273.15 283.15 293.15 303.15 313.15
    扩散系数/(10−10m2·s−1) 1.066 1.253 1.444 1.685 2.025

    Table9

    273.15~313.15 K下硫化氢所见孔隙及孔隙切片
    温度/K 273.15 283.15 293.15 303.15 313.15
    孔隙
    结构
    分布
    孔隙
    结构
    切片

    Table10

    不同温度下的亨利常数
    温度/K 273.15 283.15 293.15 303.15 313.15
    KH/(mL·(g·kPa)−1) 0.816 0.406 0.220 0.106 0.079
相关问题

主办单位:煤炭科学研究总院有限公司 中国煤炭学会学术期刊工作委员会

©版权所有2015 煤炭科学研究总院有限公司 地址:北京市朝阳区和平里青年沟东路煤炭大厦 邮编:100013
京ICP备05086979号-16  技术支持:云智互联