• 论文
主办单位:煤炭科学研究总院有限公司、中国煤炭学会学术期刊工作委员会
生物质燃料颗粒热压成型过程分析
  • Title

    Analysis on hot briquetting mechanism of biomass fuel pellets

  • 作者

    张守玉黄健添郎森张邢佳陈旭阳梁宁吕邦勇杨楚轲胡南吴玉新吕俊复

  • Author

    ZHANG Shouyu;HUANG Jiantian;LANG Sen;ZHANG Xingjia;CHEN Xuyang;LIANG Ning;LÜ Bangyong;YANG Chuke;HU Nan;WU Yuxin;LÜ Junfu

  • 单位

    上海理工大学 能源与动力工程学院怀柔实验室山西研究院长春工程学院清华大学 能源与动力工程系

  • Organization
    School of Energy and Power Engineering, University of Shanghai for Science and Technology
    Shanxi Research Institute of Huairou Laboratory
    Changchun Institute of Technology, Changchun 130012
    Department of Energy and Power Engineering, Tsinghua University
  • 摘要

    “双碳”战略下,生物质因其可再生、低污染和“零”碳排等优点而备受关注。生物质成型制备燃料颗粒能有效地解决其结构松散、能量密度低等问题,可用作化石燃料的替代品,对于新型能源体系的建设具有重要意义。笔者概述了生物质热压成型过程的影响因素,分析并探讨了热压成型过程中生物质颗粒的演变行为和结合机制。生物质成型工艺主要包括冷压成型和热压成型。与冷压成型相比,热压成型能耗较低,制得成型燃料品质较高。生物质含水率(4%~15%)对其成型燃料密度影响较大,成型温度(70~150 ℃)影响较小,成型压力(60~130 MPa)和原料粒度( < 2.5 mm)对其成型燃料密度的影响因生物质种类不同而存在较大差异。生物质热压成型过程中纤维素主要起骨架支撑作用,半纤维素、木质素则起到黏结剂作用。在热压成型的微观过程中,生物质颗粒经惯性移动后黏弹塑性变形,形成机械互锁。脆性颗粒破碎后释放出天然黏性成分,在水分、温度和压力的共同作用下形成颗粒间桥接。机械互锁和桥接缩小了生物质分子间的距离,促进了分子间作用力的产生。在对生物质热压成型机制认识的基础上,利用不同生物质掺混或水热等预处理手段对生物质组分进行调控可提高燃料颗粒的品质。利用分子动力学手段对生物质成型过程进行仿真模拟,可获得生物质组分分子间的键合机制,有利于进一步探究生物质热压成型机制,对生物质成型燃料乃至成型材料的制备有着重要的指导意义。

  • Abstract

    Under the carbon peaking and carbon neutrality strategy, biomass has attracted much attention due to its characteristics of regeneration, low pollution and zero carbon emissions. The imperfects of biomass, such as the loose structure and low energy density, can be effectively solved by briquetting, and the resulted fuel pellets can be used as a substitute for fossil fuels, which is of great significance for the construction of new energy system. In the paper, the influencing factors of the hot briquetting process of biomass were summarized, and the evolution behavior and binding mechanism of biomass particles during the hot briquetting process were analyzed and discussed. Biomass briquetting process mainly includes cold briquetting and hot briquetting. Compared with cold briquetting process of biomass, hot briquetting with lower energy consumption can produce the biomass fuel pellets with higher quality. The moisture content (4%−15%) of the raw biomass has greater influence, the briquetting temperature (70−150 ℃) has relatively smaller effect on the density of the fuel pellets, and the briquetting pressure (60−130 MPa) and the particle size ( < 2.5 mm) of the raw material show the different impact on the density of the fuel pellets from different biomass. During the hot process, cellulose mainly plays the role of supporting skeleton, hemicellulose and lignin play the role of binder. In the microcosmic process of hot briquetting process, the inertia movement and subsequent viscoelastic-plastic deformation of the biomass particles occur and the mechanical interlock is formed between the particles. The brittle particles are broken and the natural viscous components are released, and thus, the bridge linkage between the particles is formed under the integrated effects of moisture, temperature and pressure. Mechanical interlocking and bridging reduce the distance between biomass molecules and promote the generation of intermolecular forces. Based on the above-mentioned mechanism of the hot briquetting of biomass, the quality of the resulted fuel pellets can be improved by biomass component adjustment, biomass blending or hydrothermal pretreatment. In the future, the molecular dynamics simulation method will be used to investigate the biomass briquetting process to obtain the molecular bonding mechanism of biomass components, which is conducive to further exploring the hot briquetting mechanism of biomass, and provide important guiding significance for the preparation of fuel pellets and molding materials from biomass.

  • 关键词

    生物质成型分子间作用力机械互锁桥接

  • KeyWords

    biomass;briquetting;intermolecular forces;mechanical interlocking;bridging

  • 基金项目(Foundation)
    国家自然科学基金重点国际(地区)合作研究资助项目(51761125011);吉林省自然科学基金资助项目(YDZJ202101ZYTS180)
  • DOI
  • 引用格式
    张守玉,黄健添,郎森,等. 生物质燃料颗粒热压成型过程分析[J]. 煤炭学报,2024,49(2):1123−1137.
  • Citation
    ZHANG Shouyu,HUANG Jiantian,LANG Sen,et al. Analysis on hot briquetting mechanism of biomass fuel pellets[J]. Journal of China Coal Society,2024,49(2):1123−1137.
  • 相关文章
  • 图表

    Table1

    工艺参数对生物质成型的影响[21, 29-32]
    工艺参数 有利影响 不利影响
    粒度 随着粒度的减小:① 增强颗粒填充和流动性;② 增加颗粒接触面积,有利于颗粒间的桥接,促进分子间作用力的形成 当粒度过小:① 生产成本增加;② 易设备堵塞和粉尘污染
    含水率 随着含水率的增加:① 降低木质素的玻璃化转变温度、促进淀粉凝胶化、蛋白质变质;② 增加颗粒间接触面积;③ 降低颗粒间摩擦力,促进颗粒流动 当含水率过高:① 升温速率缓慢;② 蒸汽排出困难;③ 抗压缩性提高
    成型温度 随着成型温度的升高:① 有助于生物质软化,易于压缩成型;② 增强半纤维素、蛋白质和淀粉等天然粘结剂的黏结活性;③ 促使木质素软化甚至流动,填补颗粒间隙,冷却后形成固体桥接 当成型温度过高:① 易发生热解,甚至炭化;
    ② 能耗增加
    成型压力 随着成型压力的增大:① 颗粒间距缩小;② 促进颗粒发生弹性和塑性形变;
    ③ 挤出生物质中的天然黏结成分
    当成型压力过高:① 能耗增加;② 设备磨损加剧

    Table2

    常见生物质热压成型工艺参数的推荐取值范围及对成型燃料密度的影响排序
    原料 含水率/% 成型温度/℃ 成型压力/MPa 粒度/mm 各工艺参数对密度影响排序 文献
    油松 4 ~ 9 90 ~ 130 70.00 ~ 110.00 0.16 ~ 1.25 [37]
    国槐 4 ~ 8 70 ~ 130 90.00 ~ 110.00 0.16 ~ 2.50 含水率 > 成型压力 > 成型温度 > 粒度 [38]
    海棠 4 ~ 8 90 ~ 130 90.00 ~ 110.00 0.16 ~ 2.50 含水率 > 成型压力 > 粒度 > 成型温度 [38]
    柠条 5 ~ 13 80 ~ 150 60.00 ~ 120.00 < 0.16 粒度 > 含水率 > 成型压力 > 成型温度 [39-40]
    桉树 10 ~ 15 90 ~ 120 64.95 ~ 77.95 1 ~ 2 [41]
    向日葵 4 ~ 10 70 ~ 130 70.00 ~ 110.00 0.16 ~ 2.50 含水率 > 成型压力 > 成型温度 > 粒度 [38]
    玉米秸秆 6 ~ 10 130 ~ 150 130.00 成型压力 > 含水率 > 成型温度 [42]
    谷子秸秆 6 ~ 10 70 ~ 100 70.00 ~ 110.00 < 0.63 粒度 > 含水率 > 成型压力 > 成型温度 [43]
    荞麦秸秆 6 ~ 10 90 ~130 90.00 ~ 110.00 0.16 ~ 1.20 粒度 > 含水率 > 成型温度 > 成型压力 [44]
      注:表中“—”代表此项在该文献中未提及,表3同。

    Table3

    常见生物质热压成型工艺参数优化值及结果
    原料 含水率/
    %
    成型温度/
    成型压力/
    MPa
    粒度/
    mm
    密度/
    (g·cm−3)
    抗滚碎强度/
    %
    抗跌碎强度/
    %
    文献
    油松 5.15 130.0 96.88 0.16 ~ 0.63 1.089 99.33 99.79 [37]
    国槐 5.00 130.0 100.00 0. 63 ~ 1.25 1.153 [38]
    晚松 10.42 131.0 65.00 1.00 1.020 98.86 [36]
    柠条 8.00 130.0 120.00 < 0.63 1.152 [40]
    海棠林木 5.00 127.6 128.32 0. 63 ~ 1.25 1.056 99.95 99.98 [47]
    毛竹 15.00 125.0 20.00 < 0.38 1.110 95.50 [48]
    荞麦秸秆 5.00 130.0 90.00 0.16 ~ 0.63 1.170 [44]
    谷子秸秆 10.70 97.0 107.00 < 0.16 1.180 99.75 99.77 [49]
    向日葵秸秆 5.80 128.8 114.00 0.63~1.25 1.030 98.75 99.76 [35]
    水葫芦 12.00 100.0 119.37 0.58 1.362 [50]
    玉米秸秆 17.00 110.8 51.00 0.15~1.18 1.031 [34]
相关问题

主办单位:煤炭科学研究总院有限公司 中国煤炭学会学术期刊工作委员会

©版权所有2015 煤炭科学研究总院有限公司 地址:北京市朝阳区和平里青年沟东路煤炭大厦 邮编:100013
京ICP备05086979号-16  技术支持:云智互联