• 全部
主办单位:煤炭科学研究总院有限公司、中国煤炭学会学术期刊工作委员会
神府区块深部煤储层力学特性及裂缝扩展机制
  • Title

    Numerical simulations of hydraulic fracturing of deep coal seams in the Shenfu block based on mechanic properties and in-situ stress

  • 作者

    米洪刚吴见彭文春徐立富李勇

  • Author

    MI Honggang;WU Jian;PENG Wenchun;XU Lifu;LI Yong

  • 单位

    中联煤层气有限责任公司三气共采省技术创新中心中国矿业大学(北京) 地球科学与测绘工程学院

  • Organization
    China United Coalbed Methane Co., Ltd.
    Provincial Center of Technology Innovation for Coal Measure Gas Co-Production
    College of Geoscience and Surveying Engineering, China University of Mining and Technology (Beijing)
  • 摘要
    目的

    明确煤力学性质和地应力的分布特征及其对人工裂缝形态和扩展行为的控制机制,对深部煤层压裂设计、井网部署和煤层气资源开发至关重要。

    方法

    以鄂尔多斯盆地东缘北部神府区块太原组8+9号煤为研究对象,基于声波测井、密度测井、注入压降试井和排采资料,系统分析煤层及其顶底板岩层的力学性质和地应力分布特征,揭示力学性质和地应力对水力裂缝的控制机理。

    结果和结论

    结果表明:(1) 8+9号煤层与顶底板形成了泥岩−煤-泥岩(占77.4%)、砂岩−煤-泥岩(15.5%)等6种组合;(2) 基于声波和密度测井计算的力学参数显示,煤弹性模量在4.83~13.69 GPa(平均6.28 GPa),泊松比0.31~0.41(平均0.37),区域上以南北脆性高,中部塑性高;(3) 注入压降试井计算结果显示,研究区最大水平主应力介于31.11~39.11 MPa,最小水平主应力变化范围为25.78~29.94 MPa;声波测井计算结果显示,垂向应力(平均49.12 MPa)>最大水平主应力(平均39.50 MPa)>最小水平主应力(平均33.80 MPa),煤层与顶底板最小水平主应力差在0~12.75 MPa;(4) Abaqus和Fracpro PT模拟结果显示,煤弹性模量越大,裂缝高度相对越大,当顶板与煤层的力学强度差较小时防止穿层;煤层水平主应力差增大,容易沿最大水平主应力形成单一裂缝;煤层水平主应力较顶底板水平主应力越小,易在煤层内形成较长、较低、较宽的裂缝,且不易穿层。研究认为实施较大的压裂规模、缝内暂堵技术和控制裂缝净压力等手段是提高神府区块8+9号煤水力压裂效果的主要途径。

  • Abstract

    Clarifying the mechanical properties and in-situ stress distributions of coal seams, along with the mechanisms behind their control over the morphologies and propagation behavior of artificially induced fractures, is crucial to the fracturing design, well pattern deployment, and coalbed methane (CBM) production of deep coal seams. This study investigated the Nos. 8 and 9 coal seams of the Taiyuan Formation in the Shenfu block in the northern portion of the eastern margin of the Ordos Basin. Using data from sonic logging, density logging, injection/falloff well tests, and production, this study systematically analyzed the mechanical properties and in-situ stress distributions of the coal seams, as well as rock layers on their roofs and floors. Furthermore, this study revealed the mechanisms behind the controlling effects of the mechanical properties and in-situ stress on hydraulic fractures. Key findings are as follows: (1) The Nos. 8 and 9 coal seams and their roofs and floors consist of six assemblages including mudstone-coal-mudstone (77.4%) and sandstone-coal-mudstone (15.5%); (2) The mechanical parameters, calculated based on sonic and density logging, indicate that the coal seams exhibit elastic moduli ranging from 4.83 to 13.69 GPa (average: 6.28 GPa) and Poisson's ratios ranging from 0.31 to 0.41 (average: 0.37). Regionally, they manifest high brittleness in the north and south and high plasticity in the central part; (3) The calculation results of injection/falloff well tests show that the maximum and minimum horizontal principal stresses in the study area range between 31.11 and 39.11 MPa and between 25.78 and 29.94 MPa, respectively. The sonic logging-based calculation results suggest that various stresses decrease in the order of vertical stress (average: 49.12 MPa), maximum horizontal principal stress (average: 39.50 MPa), and minimum horizontal principal stress (average: 33.80 MPa). The difference in minimum horizontal principal stresses between a coal seam and its roof and floor varies between 0 and 12.75 MPa; (4) The simulation results obtained using software Abaqus and Fracpro PT indicate that higher elastic moduli of the coal seams correspond to larger fracture heights, necessitating preventing fractures from crossing layers in the case of a small difference the mechanical strength of coal seams and that of their roofs. The simulation results also suggest that increasing the difference in the horizontal principal stress of coal seams tends to induce individual fractures along the direction of the maximum horizontal principal stress. Furthermore, lower horizontal principal stresses of the coal seams with respect to their roofs and floors contribute more significantly to the formation of longer, lower, and wider fractures in the coal seams, with a minimal possibility of crossing layers. Overall, the findings lead to the conclusion that the primary approaches for enhancing the hydraulic fracturing performance of the Nos. 8 and 9 coal seams in the Shenfu block include a large fracturing scale, temporary plugging within fractures, and the control of net fracture pressures.

  • 关键词

    深部煤层气煤−岩组合类型力学性质地应力数值模拟

  • KeyWords

    deep coalbed methane;coal-rock assemblage type;mechanical property;in-situ stress;numerical simulation

  • 基金项目(Foundation)
    中海油“十四五”重大科技项目(KJGG-2022-1002)
  • DOI
  • 引用格式
    米洪刚,吴见,彭文春,等. 神府区块深部煤储层力学特性及裂缝扩展机制[J]. 煤田地质与勘探,2024,52(8):1−12. DOI: 10.12363/issn.1001-1986.24.03.0167
  • Citation
    MI Honggang,WU Jian,PENG Wenchun,et al. Numerical simulations of hydraulic fracturing of deep coal seams in the Shenfu block based on mechanic properties and in-situ stress[J]. Coal Geology & Exploration,2024,52(8):1−12. DOI: 10.12363/issn.1001-1986.24.03.0167
  • 相关文章
  • 相关专题
  • 图表
    •  
    •  
    • 研究区8+9号煤力学参数分布

    图(8) / 表(0)

相关问题

主办单位:煤炭科学研究总院有限公司 中国煤炭学会学术期刊工作委员会

©版权所有2015 煤炭科学研究总院有限公司 地址:北京市朝阳区和平里青年沟东路煤炭大厦 邮编:100013
京ICP备05086979号-16  技术支持:云智互联