• 论文
主办单位:煤炭科学研究总院有限公司、中国煤炭学会学术期刊工作委员会
基于高斯混合模型的采煤工作面冲击危险性评价
  • Title

    Rock burst hazard evaluation of coal mining face based on a Gaussian mixture model

  • 作者

    崔峰李宜霏贾冲陆长亮何仕凤张随林田梦琪

  • Author

    CUI Feng;LI Yifei;JIA Chong;LU Changliang;HE Shifeng;ZHANG Suilin;TIAN Mengqi

  • 单位

    西安科技大学 能源学院西安科技大学 教育部西部矿井开采及灾害防治重点实验室自然资源部煤炭资源勘查与综合利用重点实验室

  • Organization
    College of Energy Engineering, Xi’an University of Science and Technology
    Key Laboratory of Western Mine Mining and Disaster Prevention, Ministry of Education, Xi’an University of Science and Technology
    Key Laboratory of Coal Resources Exploration and Comprehensive Utilization
  • 摘要
    目的

    深入了解声发射或微震能量分布所蕴含的概率学信息,对于工作面回采过程中的冲击危险性评价具有重要意义。

    方法

    以陕西大佛寺煤矿4号煤层40111工作面作为工程背景,运用物理相似模拟实验、理论分析、现场监测等相关方法进行分析,研究了声发射监测数据在回采过程中的演化规律,阐明了声发射能量概率分布呈现波动性的物理意义,提出了基于高斯混合模型(Gaussian minture model,GMM)及置信区间的冲击危险性评价指标模型,并由现场微震数据进行验证。

    结果和结论

    结果表明:回采过程中上覆岩层周期性垮落并伴随声发射能量的集中释放。总能量的概率密度函数呈现多自由度的非对称分布,通过对比残差平方和等多项拟合效果指标,确定高斯混合模型为最佳拟合模型。基于EM(expectation maximization)算法的GMM聚类分析,将声发射事件总能量分布划分为两类:高频低能型和低频高能型,其中低频高能型与冲击事件的突发性和高能量破坏特征一致。依据概率−能量梯度变化特征,对工作面开采过程中冲击危险性进行了评估。研究成果为采煤工作面冲击危险性评价提供了概率学上的创新思路,具有在冲击地压监测预警及后续防治中的潜在应用价值。

  • Abstract
    Objective

    Deep insights into the probabilistic information contained in the energy distribution of acoustic emission (AE) or microseismic events are significant for the rock burst hazard evaluation of coal mining face.

    Methods

    This study investigated No.40111 mining face of the No.4 coal seam at the Dafosi Coal Mine in Shaanxi Province. Using physical simulation experiments with similar materials, theoretical analysis, and on-site monitoring, this study investigated the evolutionary patterns of AE monitoring data during coal mining and illustrated the physical meaning of fluctuations in the probability distribution of AE energy. Accordingly, this study proposed an index model for the rock burst hazard evaluation based on a Gaussian mixture model (GMM) and confidence intervals and validated the proposed model based on field microseismic data.

    Results and Conclusions

    The results indicate that the overlying strata collapsed periodically during mining, with the collapse being accompanied by intensive release of AE energy. The probability density function (PDF) of the total energy exhibited a multi-degree-of-freedom asymmetric distribution. The comparison of multiple indices of fitting effects, such as the residual sum of squares, reveals that the GMM is the optimal fitting model. As indicated by the GMM clustering analysis based on the expectation-maximization (EM) algorithm, the total energy distribution of AE events can be categorized into two types, namely the high-frequency/low-energy and low-frequency/high-energy AE signals, with the latter type consistent with the sudden occurrence and high-energy destruction of rock burst events. This study conducted a rock burst hazard evaluation of the mining face based on the probability-energy gradient variations, providing a novel probabilistic approach for the rock burst hazard evaluation of coal mining face. The new assessment method based on probabilistic information has the potential to be applied in the monitoring, early warning, and subsequent prevention of rock bursts.

  • 关键词

    高斯混合模型概率密度分布法聚类分析冲击危险性评价动力灾害预警

  • KeyWords

    Gaussian mixture model;probability density function;cluster analysis;rock burst hazard evaluation;early warning for dynamic disaster

  • 基金项目(Foundation)
    国家自然科学基金项目(52422404、51874231);陕西省创新能力支撑计划项目(2020KJXX-006)
  • DOI
  • 引用格式
    崔峰,李宜霏,贾冲,等. 基于高斯混合模型的采煤工作面冲击危险性评价[J]. 煤田地质与勘探,2024,52(10):85−96. DOI: 10.12363/issn.1001-1986.24.01.0072
  • Citation
    CUI Feng,LI Yifei,JIA Chong,et al. Rock burst hazard evaluation of coal mining face based on a Gaussian mixture model[J]. Coal Geology & Exploration,2024,52(10):85−96. DOI: 10.12363/issn.1001-1986.24.01.0072
  • 图表
    •  
    •  
    • 工作面布置

    图(12) / 表(7)

相关问题

主办单位:煤炭科学研究总院有限公司 中国煤炭学会学术期刊工作委员会

©版权所有2015 煤炭科学研究总院有限公司 地址:北京市朝阳区和平里青年沟东路煤炭大厦 邮编:100013
京ICP备05086979号-16  技术支持:云智互联