• 全部
主办单位:煤炭科学研究总院有限公司、中国煤炭学会学术期刊工作委员会

《洁净煤技术》“煤与新能源”虚拟专题(一)

来源:洁净煤技术

《洁净煤技术》编辑部筛整理了近期刊发的部分“煤与新能源”虚拟专题文章,供广大学者借鉴。扫描二维码可获取全文,点击最下方阅读原文可获取所有文章。

行业视野

新能源

类别

145个

关键词

180位

专家

32篇

论文

16125IP

点击量

6884次

下载量
  • 作者(Author): 王彬, 郭轲, 邵煜, 孙萌竹, 郝勇, 刘明恺

    摘要:氢能是零碳、高密度的能量载体,目前主要来自天然气、煤炭等化石能源。随着“双碳”战略的深入推进和能源低碳转型的加速,可持续氢能的重要性日益凸显,但现有主要制氢技术与能源重大需求之间的错位也日益突出。单一太阳能制氢受到成本、技术成熟度、基础设施等多方面因素制约,短期内尚无法大规模替代化石能源制氢。基于甲烷重整反应的强吸热特性,太阳能驱动的甲烷重整可吸收最高相当于甲烷高位热值23%的太阳热能,并以化学能的形式实现太阳能储存和利用,达到同时提升氢能中太阳能占比与降低制氢碳排放的有益效果。因此,太阳能驱动天然气重整制氢技术有望在近中期发挥重要作用。传统甲烷重整与太阳能聚光集热技术的简单结合,仍需800~1000℃的反应温度与1000以上的高聚光比,不仅导致高辐射热损失和对流热损失,而且难以解决传统重整制氢系统复杂、碳排放高等关键技术挑战。在LeChatelier原理基础上,通过产物吸收强化降低重整反应温度,有望突破与太阳能聚光技术结合的瓶颈。进一步,通过突破甲烷转化源头制氢与脱碳的协同,有望解决传统重整制氢的高温、高能耗、高碳排放挑战。从热力学和动力学双视角综述了太阳能甲烷重整制氢与脱碳的研究进展,并从聚光集热技术、重整反应器和制氢系统三方面分析阐述了当前太阳能甲烷重整制氢技术的发展趋势。具体分析了反应温度高、聚光不可逆损失大、能耗高等问题的原因,并从反应流程设计角度重点关注可同时降低温度、提高产物选择性、促进碳氢组分协同转化的新原理、新方法。其中,通过吸附剂、膜分离等方式分离单一产物可将反应温度降至500~600℃;通过交替分离2种或以上目标产物,可将反应温度进一步降低至400℃或以下,在槽式聚光、等温、常压条件下实现甲烷向H2与CO2的近100%转化与近100%产物选择性,同时实现反应温度、制氢脱碳能耗的大幅下降以及制氢装置的大幅简化和高度集成。在大力发展可再生能源、促进能源低碳转型的新形势下,甲烷重整作为一种传统制氢技术,通过热力学思路、流程设计与制氢方法的创新,有望实现与太阳能光热技术的深入结合,并为近中期可持续氢能技术的突破开辟更加广阔的未来。
    免费下载
    洁净煤技术
    2024年第09期
    767
    225
  • 作者(Author): 宋祉慧, 田军见, 倪战士, 林其钊

    摘要:风光火储联合调度是助力火电行业实现“双碳”目标的重要路径之一。为应对可再生能源出力不确定性对电力系统的影响,以实现总运行成本最小为优化目标,构建风、光出力不确定参数合集,建立两阶段鲁棒优化模型对风光火储联合系统进行调度优化。将不确定性优化问题解耦成包含确定性参数的第1阶段以及涉及不确定性变量的第2阶段。其中,第1阶段基于可再生能源出力预测值,求解火电机组启停状态和储能设备充放电状态,第2阶段作为灵活调控阶段,求解扰动发生后最恶劣场景下各设备的输出功率,并采用列约束生成算法结合算例进行计算。结果表明,该模型通过合理弃能和储能调峰可有效平抑火电机组净负荷波动,缓解机组调峰压力。相比确定性优化模型,该不确定性优化模型求解所得运行成本增加,表明考虑可再生能源不确定性的鲁棒优化具有更高的保守度,同时,可再生能源出力偏离度越大,其运行成本增幅相比确定性优化越小,有效降低了可再生能源出力偏差对系统经济性的干扰。
    免费下载
    洁净煤技术
    2024年第08期
    389
    189
  • 作者(Author): 毛文超, 黄志辉, 张泽武, 李小姗, 熊卓, 张立麒

    摘要:我国钢铁行业以高炉-转炉长流程为主,一次能源消耗主要为煤粉与焦炭,化石能源消耗大、碳排放高,其中70%的CO2排放集中在高炉炼铁工序。双碳背景下,亟需研发低碳炼铁技术以降低高炉工艺的能源消耗和CO2排放。提出一种生物质重整煤气喷吹-氧气高炉(BRGI-OBF)工艺流程,该工艺通过优化气化炉工艺参数与生物质替代煤粉重整,产生的重整煤气满足高炉的富氢冶炼需求,并降低了化石能源的使用。结合高炉煤气富氧燃烧碳捕集,可实现末流烟气中CO2富集,从而实现高炉低能耗与低碳(负碳)排放。为分析BRGI-OBF工艺的低碳潜力,首先运用AspenPlus搭建了BRGI-OBF工艺模型,研究了气化炉输入热量与生物质种类对工艺性能的影响。基于计算得到的工艺参数,运用高炉炼铁工艺能耗计算方法,对比分析了传统高炉工艺与炉顶煤气循环-氧气高炉(TGR-OBF)工艺的能耗与碳流情况。结果表明,向气化炉提供适宜的热量可有效减少煤粉用量,同时增加循环煤气量,最多可减少煤粉用量124.2kg/t(以生铁计);生物质种类对生物质用量与重整煤气的组分产生显著影响,采用杨木半焦进行重整时,杨木半焦用量为204kg/t,重整煤气中H2体积分数达29.91%,满足富氢冶炼需求。此外,BRGI-OBF工艺显著改善了能源结构,其化石能源占比约55%,与传统高炉相比,降低煤粉消耗17.6%、焦炭消耗29.3%。该工艺流程耦合富氧燃烧碳捕集技术后,末流中存在碳素372.6kg/t,以易于压缩捕集的高浓度CO2(>90%)形式存在。扣除由杨木半焦造成的碳素排放,总碳素排放为-109.9kg/t,相当于生产每吨铁水可额外捕集CO2403kg,可实现生物质+CCS的负碳技术,为钢铁行业实现深度脱碳提供重要支持。
    免费下载
    洁净煤技术
    2024年第08期
    398
    214
  • 作者(Author): 章锦阳, 欧阳子区, 丁鸿亮, 苏坤

    摘要:使用于松木生物质颗粒作为燃料,结合先进的自预热燃烧技术,实现燃料在炉膛内的流态化燃烧。通过千瓦级预热燃烧试验平台,对木本生物质颗粒在不同预热温度下的预热改性进行了全面深入的探索。使用BET、SEM扫描电镜与拉曼光谱带对比的方法对高温生物质半焦的比表面积、总孔容积、氮气等温吸附脱附特性、颗粒表明形态等关键物性参数进行检测和分析。分析结果显示,随着预热温度的升高,氮气吸附量明显增加,说明改性后的生物质半焦具有更多的孔隙结构。结合碳微晶结构分析,松木生物质颗粒在高加热速率下解聚脱挥发导致大分子碳链断裂产生小分子挥发物从而改善反应活性。在燃烧特性方面,改性后的高温生物质半焦可在下行燃烧室内迅速实现稳定燃烧,且燃烧效率高达99%以上。在NOx排放上,所有实验工况均将燃烧温度控制在1100℃以下避免产生热力型NOx。预热后松木生物质颗粒的NOx排放浓度并未随预热温度的单调变化而增减。842℃时,NOx排放质量浓度达到峰值,随后开始下降。在试验温度范围内,当预热温度设定为705℃时,NOx排放质量浓度达到最低值,即97.79mg/m3。综上,为确保松木生物质预热燃烧后具有较低的NOx排放和高燃烧效率,推荐的最佳预热温度为705℃。
    免费下载
    洁净煤技术
    2024年第07期
    763
    111
  • 作者(Author): 郭慧娜, 吴玉新, 冯乐乐, 刘杰

    摘要:燃煤机组耦合生物质甚至全燃生物质是高效低成本降碳的可行技术。生物质燃料破碎能耗高导致入炉粒径相对较大,部分大粒径颗粒在炉内高温湍流环境中的燃尽问题值得重视。采用四风扇对冲高温湍流实验装置,构造近均匀各向同性湍流流场。以两种粒径的木质生物质颗粒(dp,0=2.5、6.0mm)为研究对象,通过改变炉温(Tgas=500、700、900℃)和湍流脉动速度(urms=0~1.8m/s),研究湍流脉动速度urms对毫米级生物质颗粒燃烧特性的影响。试验通过颗粒表面-中心温度测量系统记录了颗粒温度,通过彩色图像测量系统捕捉燃烧全过程,确定不同工况下生物质颗粒的燃烧时间、着火模式、火焰形态及粒径变化。结果表明,生物质颗粒通常倾向于发生均相着火,仅在Tgas=500℃时增大urms使着火模式由均相着火转变为异相着火。urms增至1.8m/s,着火前颗粒升温速率提高了近30%,挥发分燃烧阶段颗粒表面温度升高约300℃。urms增加引起挥发分火焰锋面褶皱变形,均相燃烧强度增加,tvol略微缩短;生物质焦炭的孔隙发展更加迅速,大量氧气扩散进颗粒内发生反应,使焦炭燃尽时间大幅缩短40%以上,焦炭燃烧温度亦随之增加。颗粒湍流雷诺数Rep,t越大,受湍流脉动影响越显著。升高炉温,增大urms对颗粒温度的影响将减弱,对缩短燃烧时间的影响越强烈。
    免费下载
    洁净煤技术
    2024年第06期
    645
    171
  • 作者(Author): 胡孟启, 罗杰, 刘洋, 钟梅, 代正华, 靳立军, 亚力昆江·吐尔逊, 李建

    摘要:煤和生物质共热解过程中,填料方式会显著影响挥发分之间相互作用及产物分布。分析分隔放置(Case1)、机械混合(Case2)、煤在棉秆上层(Case3)和煤在棉秆下层(Case4)4种填料方式下淖毛湖煤(NMH)和棉秆(CS)共热解产物的分布、组成及性质,并结合分形理论研究共热解半焦的孔隙特征,探究共热解协同效应。结果表明,NMH和CS协同作用因填料方式不同而变化,填料方式对共热解产物分布及性质影响大。用Case4方式时,共热解焦油产率最高,为15.94%,较理论计算值增加3.89%,正协同效应最显著。此时,CS热解产生的富氢组分及时与NMH热解挥发物发生交互作用,导致H2、CH4和C2~C4产量较理论值降低,共热解焦油产率增加。不同填料方式对共热解焦油中轻油馏分均产生负协同作用。含氧化合物相对含量减少可能是因为共热解过程促进脱氧反应(如脱羧和脱羰基化等),进一步生成脂肪烃,减少含氧官能团发生交联反应;在共热解中,·H自由基与活性含氧基团产生正协同作用,促使焦油中O、N、S原子向固体或气体产物转移。由半焦分形结果可知半焦分形维数D1和D2均在2~3间,说明半焦粗糙度和孔结构均满足分形结构基本特征。对于Case3和Case4方式,位于下层样品半焦的表面更粗糙。用Case3方式所得CS-C孔隙更小;而Case4方式所得NMH-C孔隙更不均匀,孔结构更复杂。
    免费下载
    洁净煤技术
    2024年第06期
    663
    169
  • 作者(Author): 李明阳, 别亦然, 何勇, 王博, 王晓丁, 王智化

    摘要:硫酸分解反应器作为热化学硫碘制氢系统中的重要设备,其换热需要匹配系统的产氢量换热需求。为研究硫酸分解反应器不同结构对换热的影响,使反应器的换热满足系统需求,同时满足制造工艺的限制。通过试验对硫酸分解反应进行反应动力学参数标定并建立反应动力学模型,用gPROMS软件对反应器进行仿真,得到反应器内的压力、温度、流量和各组分浓度等参数。结果表明:反应器总长度不变,调整预热段和反应段长度比或提高填充颗粒热导率无法提升总转化率。反应器增加预热段长度可显著增加总转化率,关键原因是预热段长度决定了反应器内温度能否达到SO3分解反应所需最佳温度850℃。减小反应器直径并不能增加总转化率,虽然反应器的直径减小有利于传热,但由于整体入口流量不变,流体流速显著提高,减少了反应物的停留时间,同时还会显著增加反应器流阻。采用套筒环腔内、外加热结构作为反应器预热段可有效提高总转化率。采用内外同时加热时,增加了换热面积,有利于缩短预热段长度,预热段长度仅需900mm左右反应器出口温度即可达到850℃,得到了符合要求的反应器结构设计。
    免费下载
    洁净煤技术
    2024年第06期
    512
    152
  • 作者(Author): 王明华, 陈泽宇, 王雯, 任磊, 刘建喆, 欧训民

    摘要:氨能是一种用途广泛、绿色低碳的潜在清洁能源,其在安全性、能量密度、储运便捷性等诸多方面与氢能相比具有一定优势。我国氨能在交通、电力等领域的应用尚处于起步阶段,相关碳足迹研究备受关注。重点对加氢站、氨燃料供给站、发电厂和化工厂等应用场景下的中国氨能全产业链进行分阶段的全生命周期碳足迹分析,并重点分析氨能用于交通燃料和电力掺烧场景的碳排放水平。结果表明:从不同技术路线看,所有场景下网电电解水制氢—HB(Haber-Boschprocess,哈勃法)合成氨—液氨厢车运氨—网电裂解氨制氢路线的碳足迹水平最高,超过600g/MJ(以CO2当量计);风电电解水制氢—HB合成氨—管道输氨—光伏发电裂解氨制氢路线的碳足迹水平最低,低于40g/MJ。从制储运用各阶段分开看,除风电电解水制氢-合成氨路线外,氨能生产阶段的碳排放占比最高。从影响因素看,制氢、合成氨和氨裂解制氢等各阶段的电力消耗水平及电力碳排放系数对氨能全产业链的碳足迹高低具有重要影响。从氨能具体应用的交通用能案例看,相对于传统石油基燃料,采用可再生电力进行制氢并生产的绿氨和采用碳捕捉技术的化石能源生产的蓝氨技术路线都具有大幅降低(80%以上)碳排放水平的优势。
    免费下载
    洁净煤技术
    2024年第05期
    574
    375
推荐专家
1
推荐企业
1
  • 广告位咨询

主办单位:煤炭科学研究总院有限公司 中国煤炭学会学术期刊工作委员会

©版权所有2015 煤炭科学研究总院有限公司 地址:北京市朝阳区和平里青年沟东路煤炭大厦 邮编:100013
京ICP备05086979号-16  技术支持:云智互联