• 访客 您好
  •  | 
  • 注册
  • 全部
主办单位:煤炭科学研究总院有限公司、中国煤炭学会学术期刊工作委员会
结合改进CNN与自注意力机制的煤矿轮式机器人目标检测技术
  • Title

    Target detection technology of coal mine wheeled robot combining improved CNN and self attention mechanism

  • 作者

    唐俊飞邢海龙李溯张涛涛刘恒姚诗雨

  • Author

    TANG Junfei;XING Hailong;LI Su;ZHANG Taotao;LIU Heng;YAO Shiyu

  • 单位

    国家能源集团神东煤炭集团 柳塔煤矿国家能源集团神东煤炭集团 智能技术中心中煤科工机器人科技有限公司中煤科工(辽宁)具身智能科技有限公司

  • Organization
    Liuta Coal Mine, CHN Energy Shendong Coal Group
    Intelligent Technology Center, CHN Energy Shendong Coal Group
    China Coal Robot Technology Co., Ltd.
    China Coal (Liaoning) Embodied Intelligent Technology Co., Ltd.
  • 摘要

    在复杂煤矿环境和光照不均等恶劣条件下,现有的目标检测技术难以满足智能巡检需求。为解决这一问题,提出了一种基于改进卷积神经网络和自注意力机制的目标检测方法。首先构建了基于金字塔结构与注意力机制的特征提取网络;在此基础上,设计了双向特征金字塔网络模块,进一步强化特征提取功能;最后,利用YOLO Head模块进行预测处理。试验结果表明:经过2 398次迭代后,模型的损失最终稳定在0.01左右,达到了理想的loss效果;模型在迭代至1 598次时准确度达到0.95,并在1 845次左右进入稳态,是达到稳态最快的模型之一,整体检测时长为3.2 ms;模型能够提升复杂环境下目标检测的精度和效率。

  • Abstract

    In complex coal mine environment and poor lighting conditions, the existing target detection technology is difficult to meet the needs of intelligent inspection. To solve this problem, an object detection method based on improved convolutional neural network and self-attention mechanism is proposed. Firstly, a feature extraction network based on pyramid structure and attention mechanism is constructed. On this basis, the bidirectional feature pyramid network module is designed to further strengthen the feature extraction function. Finally, the YOLO Head module is used for prediction processing. The test results show that after 2 398 iterations, the loss of the model is stabilized at about 0.01, and the ideal loss effect is achieved. The accuracy of the model reached 0.95 at 1 598 iterations and entered steady state at about 1 845 iterations, which was one of the fastest models to reach steady state. The overall detection time was 3.2 ms. The model can improve the accuracy and efficiency of target detection in complex environment.

  • 关键词

    煤矿轮式机器人智能巡检目标检测算法金字塔结构注意力机制深度学习

  • KeyWords

    coal mine wheeled robot;intelligent inspection;object detection algorithm;pyramid structure;attention mechanism;deep learning

  • 基金项目(Foundation)
    国家重点研发计划资助项目(2022YFB4703600);2023年辽宁省人工智能创新发展计划重大专项资助项目(2023JH26/10100006);中煤科工集团科技创新基金资助项目(2023-QN003)
  • DOI
  • 引用格式
    唐俊飞,邢海龙,李溯,等. 结合改进CNN与自注意力机制的煤矿轮式机器人目标检测技术[J]. 煤矿安全,2025,56(3):224−232.
  • Citation
    TANG Junfei, XING Hailong, LI Su, et al. Target detection technology of coal mine wheeled robot combining improved CNN and self attention mechanism[J]. Safety in Coal Mines, 2025, 56(3): 224−232.
  • 图表
    •  
    •  
    • 轻量化卷积模块

    图(7) / 表(0)

相关问题
立即提问

主办单位:煤炭科学研究总院有限公司 中国煤炭学会学术期刊工作委员会

©版权所有2015 煤炭科学研究总院有限公司 地址:北京市朝阳区和平里青年沟东路煤炭大厦 邮编:100013
京ICP备05086979号-16  技术支持:云智互联
累计访问量:27675411,今日访问人数:9580 站长统计