• 全部
主办单位:煤炭科学研究总院有限公司、中国煤炭学会学术期刊工作委员会
基于改进YOLOv8的煤矿输送带异物检测
  • Title

    Foreign object detection of coal mine conveyor belt based on improved YOLOv8

  • 作者

    洪炎汪磊苏静明汪瀚涛李木石

  • Author

    HONG Yan;WANG Lei;SU Jingming;WANG Hantao;LI Mushi

  • 单位

    安徽理工大学电气与信息工程学院

  • Organization
    School of Electrical and Information Engineering, Anhui University of Science and Technology
  • 摘要
    现有基于深度学习的输送带异物检测模型较大,难以在边缘设备部署,且对不同尺寸异物和小目标异物存在错检、漏检情况。针对上述问题,提出一种基于改进YOLOv8的煤矿输送带异物检测方法。采用深度可分离卷积、压缩和激励(SE)网络将YOLOv8主干网络中C2f模块的Bottleneck重新构建为DSBlock,在保持模型轻量化的同时提升检测性能;为增强对不同尺寸目标物体信息的获取能力,引入高效通道注意力(ECA) 机制,并对ECA的输入层进行自适应平均池化和自适应最大池化操作,得到跨通道交互MECA模块,以增强模块的全局视觉信息,进一步提升异物识别精度;将YOLOv8的3个检测头修改为4个轻量化小目标检测头,以增强对小目标的敏感性,有效降低小目标异物的漏检率和错检率。实验结果表明:改进YOLOv8的精确度达91.69%,mAP@50达92.27%,较YOLOv8分别提升了3.09%和4.07%;改进YOLOv8的检测速度达73.92帧/s,可充分满足煤矿输送带异物实时检测的需求;改进YOLOv8的精确度、mAP@50、参数量、权重大小和每秒浮点运算数均优于SSD,Faster-RCNN,YOLOv5,YOLOv7−tiny等主流目标检测算法。
  • Abstract
    The existing deep learning based foreign object detection models for conveyor belts are relatively large and difficult to deploy on edge devices. There are errors and omissions in detecting foreign objects of different sizes and small objects. In order to solve the above problems, a foreign object detection method for coal mine conveyor belts based on improved YOLOv8 is proposed. The depthwise separable convolution, squeeze-and-excitation (SE) networks are used to reconstruct the Bottleneck of the C2f module in the YOLOv8 backbone network as a DSBlock, which improves the detection performance while keeping the model lightweight. To enhance the capability to obtain information from objects of different sizes, an efficient channel attention (ECA) mechanism is introduced. The input layer of ECA is subjected to adaptive average pooling and adaptive maximum pooling operations to obtain a cross channel interactive MECA module, which enhances the global visual information of the module and further improves the precision of foreign object recognition. The method modifies the 3 detection heads of YOLOv8 to 4 lightweight small object detection heads to enhance sensitivity to small objects and effectively reduce the missed and false detection rates of small object foreign objects. The experimental results show that the improved YOLOv8 achieves a precision of 91.69%, mAP@50 reached 92.27%, an increase of 3.09% and 4.07% respectively compared to YOLOv8. The detection speed of improved YOLOv8 reaches 73.92 frames/s, which can fully meet the demand for real-time detection of foreign objects on conveyor belts in coal mines. The improved YOLOv8 outperforms mainstream object detection algorithms such as SSD, Faster-RCNN, YOLOv5, and YOLOv7-tiny in terms of precision, mAP@50, number of parameters, weight size, and number of floating point operations.
  • 关键词

    输送带异物检测YOLOv8SE网络高效通道注意力机制轻量化小目标检测自适应平均池化自适应最大池化

  • KeyWords

    foreign object detection on conveyor belts;YOLOv8;SE network;efficient channel attention mechanism;lightweight;small object detection;adaptive average pooling;adaptive maximum pooling

  • 基金项目(Foundation)
    国家重点研发计划项目(2021YFD2000204);国家自然科学基金项目(12304236,32301688,52174141);安徽数字农业工程技术研究中心开放项目(AHSZNYGCZXKF021);大学生创新创业基金项目(202210361053,202310361037);安徽理工大学研究生创新基金项目(2024cx2067)。
  • DOI
  • 引用格式
    洪炎,汪磊,苏静明,等. 基于改进YOLOv8的煤矿输送带异物检测[J]. 工矿自动化,2024,50(6):61-69.
  • Citation
    HONG Yan, WANG Lei, SU Jingming, et al. Foreign object detection of coal mine conveyor belt based on improved YOLOv8[J]. Journal of Mine Automation,2024,50(6):61-69.
  • 图表
    •  
    •  
    • YOLOv8网络结构

    图(12) / 表(3)

相关问题
立即提问

主办单位:煤炭科学研究总院有限公司 中国煤炭学会学术期刊工作委员会

©版权所有2015 煤炭科学研究总院有限公司 地址:北京市朝阳区和平里青年沟东路煤炭大厦 邮编:100013
京ICP备05086979号-16  技术支持:云智互联