• 论文
主办单位:煤炭科学研究总院有限公司、中国煤炭学会学术期刊工作委员会
煤矿覆岩主控致灾层位危险识别及现场应用
  • Title

    Identification and on-site application of the main hazard-causing stratum of overlying strata in coal mines

  • 作者

    马玉镇朱斯陶潘俊锋高永涛张修峰姜福兴刘金海王冰陈洋

  • Author

    MA Yuzhen;ZHU Sitao;PAN Junfeng;GAO Yongtao;ZHANG Xiufeng;JIANG Fuxing;LIU Jinhai;WANG Bing;CHEN Yang

  • 单位

    北京科技大学 土木与资源工程学院中煤科工开采研究院有限公司山东能源集团有限公司陕西彬长矿业集团有限公司

  • Organization
    School of Civil and Resource Engineering, University of Science and Technology Beijing
    CCTEG Coal Mining Research Institute
    Shandong Energy Group Co., Ltd.
    Shaanxi Binchang Mining Group Co., Ltd.
  • 摘要

    针对煤矿地面水力压裂技术施工中工作面覆岩主控致灾层位难以准确辨识的难题,以孟村煤矿401102工作面地面水力压裂工业试验为背景,采用理论分析、微震监测、现场调研等方法,揭示了煤矿厚硬覆岩运动诱发矿震和冲击地压的动力灾害机理,分析了基于载荷三带理论的厚硬覆岩分区运动特征与诱发动力灾害之间的关系,建立了基于关键层运动状态的矿震能量预测模型与采场等效附加应力估算模型,提出了基于K-means聚类算法和肘部法则的煤矿覆岩主控致灾层位识别技术方法,确定了现场压裂施工层位并进行工业试验,根据现场微震监测数据及理论分析结果进行了效果验证,得到结论如下:孟村煤矿401102工作面致冲关键层及矿震关键层均为距离煤层66 m的安定组关键层R9,其初次破断运动采场等效附加扰动应力理论值为7.23 MPa,初次破断运动释放矿震能量理论值为6.08×105 J,致灾危险性较强;震−冲关键层压裂后,矿震能量理论值降幅94%,采场等效附加扰动应力理论值降幅76%,工作面上方5×103 J大能量微震事件出现明显上移趋势,上移量约为15 m;103 J及以上能级微震事件频次占比显著下降,由60.39%降至17.89%,最大微震事件能量由6.65×105 J降至9.75×103 J;102 J及以下能级微震事件频次占比显著上升,由39.61%增至82.11%。

  • Abstract

    In response to the challenging task of accurately identifying the main hazard-causing layer of overlying strata in the coal mine surface hydraulic fracturing construction, this study focuses on the industrial test of ground hydraulic fracturing at the 401102 working face of the Mengcun Coal Mine. The research is conducted using the methods of theoretical analysis, microseismic monitoring, and on-site investigation to reveal the dynamic disaster mechanism of mine earthquakes and rock bursts induced by the movement of thick and hard overlying strata in the coal mines. The relationship between the movement characteristics of thick and hard overlying strata based on a three-zone structure loading model of overlying strata and induced dynamic disasters is analyzed, and a prediction model for mining seismic energy and an estimation model for equivalent additional stress in mining areas based on the movement state of key layers are established. A coal mine identification technology for the main hazard-causing layer of overlying strata is proposed based on the K-means clustering algorithm and the elbow rule. The construction layer for hydraulic fracturing is determined, and an industrial test is carried out on-site. The effectiveness is verified based on the microseismic monitoring data and theoretical analysis results, leading to the following conclusions. In the Mengcun Coal Mine’s 401102 working face, both the key stratum responsible for rock bursts and mine seismic activities can be traced to the R9 key stratum of the Anding Group, situated 66 meters away from the coal seam. The primary fracturing movement of this critical stratum R9 imparts an equivalent supplementary disturbance stress value of 7.23 MPa, with the seismic energy liberated by this initial rupture motion quantifying to 6.08×105 J, thereby indicating a pronounced susceptibility towards catastrophic occurrences. After fracturing the key layer which induces mining earthquakes and rock bursts, the theoretical value of the mine earthquake energy is reduced by 94%, and the theoretical value of the equivalent disturbance stress of the working face is reduced by 76%. High-energy microseismic events above the working face with an energy of 5×103 J show a noticeable upward trend, with an upward movement of approximately 15 m. The frequency ratio of microseismic events with an energy level of 103 J or higher significantly decreases from 60.39% to 17.89%, and the maximum microseismic event energy decreases from 6.65×105 J to 9.75×103 J. The proportion of microseismic events with an energy level of 102 J and below significantly increases from 39.61% to 82.11%.

  • 关键词

    地面水力压裂冲击地压矿震覆岩主控致灾层位识别方法

  • KeyWords

    surface hydraulic fracturing;rock burst;mine earthquake;overburden main control hazard-causing layer;identification method

  • 基金项目(Foundation)
    国家重点研发计划资助项目(2022YFC3004604);国家自然科学基金资助项目(52374076);中国科协青年人才托举工程资助项目(2021QNRC001)
  • DOI
  • 引用格式
    马玉镇,朱斯陶,潘俊锋,等. 煤矿覆岩主控致灾层位危险识别及现场应用[J]. 煤炭学报,2024,49(6):2589−2603.
  • Citation
    MA Yuzhen,ZHU Sitao,PAN Junfeng,et al. Identification and on-site application of the main hazard-causing stratum of overlying strata in coal mines[J]. Journal of China Coal Society,2024,49(6):2589−2603.
  • 相关文章
  • 图表

    Table1

    401102工作面区域钻孔综合岩层参数
    岩层编号 岩性 厚度/m 岩层编号 岩性 厚度/m
    R27 黄土 117.60 R13 粉砂岩 18.03
    R26 泥岩 78.63 R12 中砂岩 1.52
    R25 粗粒砂岩 10.82 R11 粗粒砂岩 6.31
    R24 中砂岩 55.60 R10 细砂岩 13.62
    R23 含砾砂岩 50.67 R9 粗砂岩 38.28
    R22 细砂岩 46.58 R8 粉砂岩 8.74
    R21 含砾砂岩 57.04 R7 粗粒砂岩 1.75
    R20 砾岩 2.10 R6 砂质泥岩 12.13
    R19 含砾砂岩 14.57 R5 粗粒砂岩 6.95
    R18 中砂岩 41.44 R4 泥岩 9.96
    R17 粗粒砂岩 30.61 R3 粉砂岩 11.13
    R16 中粒砂岩 38.05 R2 细砂岩 6.87
    R15 粗粒砂岩 12.31 R1 砂质泥岩 8.45
    R14 砾岩 25.28 Coal 4煤 16.00

    Table2

    考虑开采条件及厚硬岩层赋存的载荷三带结构划分结果
    序号 HLh关系 厚硬岩层赋存 载荷三带厚度/m
    是否赋存 赋存层位 即时加载带ILZ 延时加载带DLZ 静载带SLZ
    1 10h < L < H 10h L−10h HL
    2 S < 10h S LS HL
    3 10h < S < L 10h L−10h HL
    4 L < S < H 10h L−10h HL
    5 L < 10h < H 10h H−10h
    6 S < 10h S 10h−S H−10h
    7 10h < S < H 10h H−10h
    8 H < L < 10h H
    9 S < H S HS
    10 10h < H < L 10h H−10h
    11 S < 10h S HS
    12 10h < S < H 10h H−10h
    13 H < 10h < L H
    14 S < H S HS
    15 L < H < 10h H
    16 S < H S HS

    Table3

    不同开采条件下厚硬岩层顶板工作面覆岩主控诱灾层位识别工程判据
    地层及开采条件 矿震关键层\( {}O_{\max }^{\text{z}} \)识别判据 致冲关键层\( {}O_{\max }^{\text{c}} \)识别判据
    10h < L < H
    (S < 10h)
    \( \left\{ \begin{array}{l}{O}_{{}_{\mathrm{max}}}^{\text{z}}=\mathrm{arg}{\mathrm{max}}_{\left\{i\in K|1\le i\le K'\right\}}{T}_{{}_{i}}^{\text{z}}\\ {m}_{{O}_{{}_{\mathrm{max}}}^{\text{z}}}\in \left[S, L\right]\end{array} \right. \) \( \left\{ \begin{array}{l}{O}_{{}_{\mathrm{max}}}^{\text{c}}=\mathrm{arg}{\mathrm{max}}_{\left\{i\in K|1\le i\le K'\right\}}{T}_{{}_{i}}^{\text{c}}\\ {m}_{{O}_{{}_{\mathrm{max}}}^{\text{c}}}\in \left[S, L\right]\end{array} \right. \)
    L < 10h < H
    (S < 10h)
    \( \left\{ \begin{array}{l}{O}_{{}_{\mathrm{max}}}^{\text{z}}=\mathrm{arg}{\mathrm{max}}_{\left\{i\in K|1\le i\le K'\right\}}{T}_{{}_{i}}^{\text{z}}\\ {m}_{{O}_{{}_{\mathrm{max}}}^{\text{z}}}\in \left[S, 10h\right]\end{array} \right. \) \( \left\{ \begin{array}{l}{O}_{{}_{\mathrm{max}}}^{\text{c}}=\mathrm{arg}{\mathrm{max}}_{\left\{i\in K|1\le i\le K'\right\}}{T}_{{}_{i}}^{\text{c}}\\ {m}_{{O}_{{}_{\mathrm{max}}}^{\text{c}}}\in \left[S, 10h\right]\end{array} \right. \)
    H < L < 10h
    (S < H)
    \( \left\{ \begin{array}{l}{O}_{{}_{\mathrm{max}}}^{\text{z}}=\mathrm{arg}{\mathrm{max}}_{\left\{i\in K|1\le i\le K'\right\}}{T}_{{}_{i}}^{\text{z}}\\ {m}_{{O}_{{}_{\mathrm{max}}}^{\text{z}}}\in \left[S, H\right]\end{array} \right. \) \( \left\{ \begin{array}{l}{O}_{{}_{\mathrm{max}}}^{\text{c}}=\mathrm{arg}{\mathrm{max}}_{\left\{i\in K|1\le i\le K'\right\}}{T}_{i}^{\text{c}}\\ {m}_{{O}_{{}_{\mathrm{max}}}^{\text{c}}}\in \left[S, H\right]\end{array} \right. \)
    10h < H < L
    (S < 10h)
    \( \left\{ \begin{array}{l}{O}_{{}_{\mathrm{max}}}^{\text{z}}=\mathrm{arg}{\mathrm{max}}_{\left\{i\in K|1\le i\le K'\right\}}{T}_{{}_{i}}^{\text{z}}\\ {m}_{{O}_{{}_{\mathrm{max}}}^{\text{z}}}\in \left[10h, H\right]\end{array} \right. \) \( \left\{ \begin{array}{l}{O}_{{}_{\mathrm{max}}}^{\text{c}}=\mathrm{arg}{\mathrm{max}}_{\left\{i\in K|1\le i\le K'\right\}}{T}_{{}_{i}}^{\text{c}}\\ {m}_{{O}_{{}_{\mathrm{max}}}^{\text{c}}}\in \left[10h, H\right]\end{array} \right. \)
    H < 10h < L
    (S < H)
    \( \left\{ \begin{array}{l}{O}_{{}_{\mathrm{max}}}^{\text{z}}=\mathrm{arg}{\mathrm{max}}_{\left\{i\in K|1\le i\le K'\right\}}{T}_{{}_{i}}^{\text{z}}\\ {m}_{{O}_{{}_{\mathrm{max}}}^{\text{z}}}\in \left[S, H\right]\end{array} \right. \) \( \left\{ \begin{array}{l}{O}_{{}_{\mathrm{max}}}^{\text{c}}=\mathrm{arg}{\mathrm{max}}_{\left\{i\in K|1\le i\le K'\right\}}{T}_{i}^{\text{c}}\\ {m}_{{O}_{{}_{\mathrm{max}}}^{\text{c}}}\in \left[S, H\right]\end{array} \right. \)
    L < H < 10h
    (S < H)
    \( \left\{ \begin{array}{l}{O}_{{}_{\mathrm{max}}}^{\text{z}}=\mathrm{arg}{\mathrm{max}}_{\left\{i\in K|1\le i\le K'\right\}}{T}_{{}_{i}}^{\text{z}}\\ {m}_{{O}_{{}_{\mathrm{max}}}^{\text{z}}}\in \left[S, H\right]\end{array} \right. \) \( \left\{ \begin{array}{l}{O}_{{}_{\mathrm{max}}}^{\text{c}}=\mathrm{arg}{\mathrm{max}}_{\left\{i\in K|1\le i\le K'\right\}}{T}_{i}^{\text{c}}\\ {m}_{{O}_{{}_{\mathrm{max}}}^{\text{c}}}\in \left[S, H\right]\end{array} \right. \)

    Table4

    401102工作面目标识别带关键层划分及岩层参数情况
    序号 地质层组 岩层 厚度/m 至煤层距离/m 弹性模量/GPa 抗拉强度/MPa 关键层划分
    6 宜君组 砾岩R14 25.28 143.74 17.12 2.83 关键层
    5 安定组 粉砂岩R13 18.03 125.71 7.02 1.79 关键层
    4 中砂岩R12 1.52 124.19 8.30 2.31
    3 粗粒砂岩R11 6.31 117.88 11.06 2.57
    2 细砂岩R10 13.62 104.26 13.08 2.05 关键层
    1 粗砂岩R9 38.28 65.98 11.06 2.57 关键层

    Table5

    401102工作面致灾覆岩识别参数
    序号 地质层组 岩层 Δσcn/MPa Ucn/J
    4 宜君组 砾岩R14 0.47 268 407.21
    3 安定组 粉砂岩R13 0.55 125 445.56
    2 细砂岩R10 0.73 62 045.29
    1 粗砂岩R9 7.23 608 417.68

    Table6

    压裂前后目标识别带关键层识别参数情况
    序号 岩层 压裂前 压裂后
    Δσcn/MPa Ucn/J Δσcn/MPa Ucn/J
    4 R14 0.47 268 407.21 0.17 33 846.24
    3 R13 0.55 125 445.56 0.53 115 733.30
    2 R10 0.73 62 045.29 0.64 52 225.49
    1 R9 7.23 608 417.68 1.72 34 599.06
相关问题

主办单位:煤炭科学研究总院有限公司 中国煤炭学会学术期刊工作委员会

©版权所有2015 煤炭科学研究总院有限公司 地址:北京市朝阳区和平里青年沟东路煤炭大厦 邮编:100013
京ICP备05086979号-16  技术支持:云智互联