• 论文
主办单位:煤炭科学研究总院有限公司、中国煤炭学会学术期刊工作委员会
高温高压下不同结构形式裂缝充填花岗岩热力学特性
  • Title

    Thermal and mechanical properties of fracture-filled granite with different structural forms under high temperature and high pressure

  • 作者

    阴伟涛冯子军

  • Author

    YIN Weitao;FENG Zijun

  • 单位

    太原理工大学原位改性采矿教育部重点实验室

  • Organization
    Key Laboratory of In-situ Property-improving Mining, Taiyuan University of Technology
  • 摘要

    深部干热岩地热能储层一般为非完整岩体,含有大量因地质构造运动形成的裂缝。构造裂缝随后被热液充填,这种储层被称为裂缝充填储层。为指导深部干热岩地热开发,利用太原理工大学自主研制600 ℃高温高压岩体三轴试验机研究了中国山西芦芽山花岗岩母岩(Ⅰ类花岗岩)、热液充填体(Ⅱ类花岗岩)、充填体与母岩胶结界面横向贯通试样花岗岩(Ⅲ类花岗岩)、充填体与母岩胶结界面纵向贯通试样花岗岩(Ⅳ型花岗岩)等4类花岗岩高温(500 ℃)高压(20 MPa围压)条件下的热力学特性。研究得出4类花岗岩热膨胀系数随温度升高可分为低温缓慢波动段、中低温快速增加段以及中高温快速减小段3个阶段。4类花岗岩弹性模量随温度升高先缓慢增加后快速降低,溶蚀孔隙结构以及低键合强度矿物的存在导致热液充填体弹性模量最低。此外,得出裂缝充填花岗岩体内原生裂缝闭合的临界温度大约为200 ℃;胶结界面附近充填体恢复弱面结构特性的临界温度为250 ℃左右。最后,得出了4类花岗岩高温高压条件下的破坏形式。裂缝充填花岗岩体内的母岩粗晶粒边界处、热液充填体溶蚀孔隙处和胶结界面处极有可能会在水力压裂建造储层过程中形成大范围高效导水通道,为干热岩地热开采储层建造理论和技术提供新的思路。

  • Abstract

    The reservoir of deep hot dry rock (HDR) geothermal energy is not intact rock mass, which includes a large number of fractures induced by geological tectonic movement. The tectonic fractures are subsequently filled by hydrothermal fluid. This kind of reservoir is so-called fracture-filled reservoir. To guide deep hot dry rock geothermal mining, this paper used a 600 ℃ high-temperature and high-pressure rock mass triaxial testing machine independently developed by the Taiyuan University of Technology to study the thermal and mechanical characteristics under high temperature (500 ℃) and high pressure (20 MPa confining pressure) of four types of granite from the Luya Mountain, Shanxi, China, including parent rock (type I granite), hydrothermal fluid backfill (type II granite), cementation interface between the backfill and the parent rock laterally positioned through the specimen (type III granite), and cementation interface between the backfill and the parent rock longitudinally positioned through the specimen (type IV granite). The research shows that the thermal expansion coefficient of four types of granite can be divided into three stages with the increase of temperature: the slow fluctuation stage at low temperature, the rapid increase stage at low and medium temperature, and the rapid decrease stage at medium and high temperature. The elastic modulus of four types of granite increases slowly and then decreases rapidly with the increase of temperature. The dissolution pore structure and the presence of minerals with low bonding strength lead to the lowest elastic modulus of hydrothermal fluid backfill. In addition, the critical temperature of the closure of pre-existing fractures in the fracture-filled granite is about 200 ℃. The critical temperature for the backfill near the cementation interface to restore the weak-plane structure characteristics is about 250 ℃. Finally, the failure modes of four types of granite under high temperature and high pressure are obtained. The coarse grain boundary of the parent rock, the dissolution pores of the hydrothermal fluid backfill and the cementation interface in the fracture-filled granite are very likely to form a large-scale efficient water channel during the reservoir construction by hydraulic fracturing, which provides a new idea for the theory and technology of reservoir construction for HDR geothermal exploitation.

  • 关键词

    裂缝充填花岗岩高温高压微观结构矿物特征热力学特性干热岩地热开发

  • KeyWords

    fracture-filled granite;high temperature and high pressure;microstructure;mineral characteristics;thermal and mechanical characteristics;hot dry rock geothermal development

  • 基金项目(Foundation)
    国家自然科学基金资助项目(52122405);山西省基础研究计划(自由探索类)资助项目(202103021223071);山西省科技重大专项计划“揭榜挂帅”资助项目(202101060301024)
  • DOI
  • 引用格式
    阴伟涛,冯子军. 高温高压下不同结构形式裂缝充填花岗岩热力学特性[J]. 煤炭学报,2024,49(6):2660−2674.
  • Citation
    YIN Weitao,FENG Zijun. Thermal and mechanical properties of fracture-filled granite with different structural forms under high temperature and high pressure[J]. Journal of China Coal Society,2024,49(6):2660−2674.
  • 相关文章
  • 图表

    Table1

    裂缝充填花岗岩主要矿物性质
    试件 矿物
    组分
    矿物
    质量分数/%
    晶体颗粒
    平均尺寸/mm
    热膨胀系数/
    10−6−1 [34]
    花岗岩母岩 斜长石 44 5.4 4.0
    石英 23 0.7 11.0
    角闪石 21 6.5 8.0
    云母 10 1.9 3.0
    磁铁矿 1 1.5
    其他 1
    充填体 长石 46 1.5 6.5
    石英 45 1.0 11.0
    云母 8 0.6 3.0
    其他 1

    Table2

    4类花岗岩热膨胀系数3阶段变化温度
    花岗岩类型
    低温缓慢波动段开始温度 50 50 50 50
    低温缓慢波动段结束温度 150 100 200 150
    中低温快速增加段开始温度 150 100 200 150
    中低温快速增加段结束温度 400 250 350 300
    中高温快速减小段开始温度 400 250 350 300
    中高温快速减小段结束温度 500 500 500 500

    Table3

    不同温度下4类花岗岩(I、II、III、IV)试件弹性模量
    温度/℃ 弹性模量/GPa
    25 13.88 10.80 11.68 13.01
    100 14.68 11.20 12.06 13.46
    150 14.98 12.40 13.02 14.13
    200 15.22 12.70 13.43 14.09
    250 15.64 11.86 13.98 14.65
    300 16.05 10.60 13.07 14.98
    350 15.32 10.10 11.96 13.20
    400 14.68 9.28 11.60 12.68
    450 12.87 9.12 10.60 11.98
    500 12.41 8.86 10.17 10.80

    Table4

    500 下4类花岗岩破坏试验力学参数
    花岗岩
    类型
    峰值应力/
    MPa
    峰值
    应变
    塑性流动阶段
    应力差/MPa
    186 0.015 166
    164 0.014 144
    126 0.009 106
    150 0.010 130

    Table5

    高温高压下裂缝充填花岗岩破坏模式及控制因素
    花岗岩类型破坏形状破坏模式控制因素
    Ⅰ类穿越粗晶体颗粒
    的剪切破坏、沿
    粗晶体颗粒边界
    的剪切破坏
    粗晶体颗粒
    Ⅱ类纵向贯通基质的
    剪切破坏、沿溶
    蚀孔隙结构的剪
    切破坏
    溶蚀孔隙
    Ⅲ类穿越粗晶体颗粒
    的剪切破坏、沿
    粗晶体颗粒边界的
    剪切破坏、沿胶结
    界面结构的剪切
    破坏
    粗晶体颗粒
    和胶结界面
    弱面结构
    Ⅳ类沿胶结界
    面结构的
    剪切破坏
    胶结界面
    弱面结构
相关问题

主办单位:煤炭科学研究总院有限公司 中国煤炭学会学术期刊工作委员会

©版权所有2015 煤炭科学研究总院有限公司 地址:北京市朝阳区和平里青年沟东路煤炭大厦 邮编:100013
京ICP备05086979号-16  技术支持:云智互联