• 论文
主办单位:煤炭科学研究总院有限公司、中国煤炭学会学术期刊工作委员会
粉煤灰建材化增值利用:最新技术与未来展望
  • Title

    Value-added utilization of pulverized fuel ash as construction materials: State-of-the-art technologies and future prospects

  • 作者

    时雅倩关渝珊葛伟哲夏岩王磊胡艳军王树荣

  • Author

    SHI Yaqian;GUAN Yushan;GE Weizhe;XIA Yan;WANG Lei;HU Yanjun;WANG Shurong

  • 单位

    浙江大学 能源高效清洁利用全国重点实验室浙江工业大学 能源与动力工程研究所

  • Organization
    State Key Laboratory of Clean Energy Utilization, Zhejiang University
    Institute of Energy and Power Engineering, Zhejiang University of Technology
  • 摘要

    粉煤灰是燃煤电厂产生的大宗固体残余物,其产量巨大且逐年增加。大量的粉煤灰不加以处理,则会对生态环境造成危害,也是一种资源的浪费。粉煤灰建材化利用技术可提高资源利用效率、减低环境风险,符合大宗固废高效低碳资源化利用的需求,助力实现国家“双碳”战略目标。利用粉煤灰生产绿色建筑材料,通过优化生产工艺与开发高新技术,可提高其建材化利用效率,进而实现粉煤灰的规模化与高值化利用。总结了粉煤灰的生产概况与物理化学特性,在此基础上,系统地介绍了近年来我国主要粉煤灰建材化利用技术类型,包括用作水泥生产原料、混凝土掺合料、粉煤灰砖、人造骨料、玻璃陶瓷材料、耐火保温材料和新型智能建筑材料等。进一步重点阐述粉煤灰在建材领域资源化利用的研究现状,分析了现阶段不同技术的适用性,总结粉煤灰基绿色建材制备最新技术及未来研究面临的挑战,详细介绍了粉煤灰应用在建筑材料中的作用机理,针对粉煤灰在建材化利用中存在的问题提出思考。最后,对粉煤灰基绿色建材的研发和应用前景进行展望,提出粉煤灰“传统建材化工艺的大规模消纳”与“新型建材化技术的高值化利用”并行研究,理论研究与工程实践互为支撑,为粉煤灰建材化利用研究提供参考。

  • Abstract

    Pulverized fuel ash (PFA) is a by-product from coal-fired power plants. The generation of PFA is huge and increases yearly. A large amount of untreated PFA is harmful to the environment, and it is also a waste of resources. Recycling PFA as construction materials would improve resource utilization efficiency, reduce environmental risks, conform to the demand for high-efficient and low-carbon utilization of solid waste and help to achieve the national strategy goals of carbon peak and carbon neutrality. The utilization efficiency of PFA as construction materials could be improved by optimizing production processes and developing new technologies, which would promote its large-scale and high-value utilization. In this paper, the general situation and physical and chemical properties of PFA are summarized. Various value-added utilization technologies of PFA as construction materials, including raw materials for cement production, supplementary cementitious materials, bricks and blocks, artificial aggregates, glass-ceramic materials, fire-resistant insulation materials, and new intelligent construction materials are comprehensively reviewed. This paper also introduces the research status of the utilization of PFA in construction materials, analyzes the applicability of different technologies, summarizes the latest technologies for preparing the PFA-based green construction materials and challenges faced in future research, provides detailed introductions to the mechanism of PFA application, and proposes thoughts on the problems existing in the utilization of PFA as construction materials. Finally, the further perspectives of the development of the PFA-derived low-carbon construction materials are highlighted. The study suggests that the “traditional large-scale consumption of PFA” and “high-value utilization of PFA” should be researched in parallel, and theoretical research and engineering practice should support each other, which would provide some scientific references for the sustainable management of PFA.

  • 关键词

    粉煤灰增值利用火山灰活性碱激发功能性混凝土绿色建筑材料

  • KeyWords

    pulverized fuel ash (PFA);value-added utilization;pozzolanic activity;alkali excitation;functional concrete;green construction materials

  • 基金项目(Foundation)
    国家自然科学基金资助项目(52206174)
  • DOI
  • 引用格式
    时雅倩,关渝珊,葛伟哲,等. 粉煤灰建材化增值利用:最新技术与未来展望[J]. 煤炭学报,2024,49(6):2860−2875.
  • Citation
    SHI Yaqian,GUAN Yushan,GE Weizhe,et al. Value-added utilization of pulverized fuel ash as construction materials: State-of-the-art technologies and future prospects[J]. Journal of China Coal Society,2024,49(6):2860−2875.
  • 图表

    Table1

    PC灰与CFB灰的主要化学组成
    粉煤灰 质量分数 烧失量
    SiO2 Al2O3 Fe2O3 SO3 CaO MgO
    PC灰 37~58 24~37 1~7 0.4~3.0 1.1~6.6 0.4~1.5 4.8~8.0
    CFB灰 27~50 14~30 3~13 1~13 4~18 0.2~2.0 2.3~15.0

    Table2

    不同种类原煤所产生粉煤灰的化学成分
    煤种 质量分数 烧失量
    SiO2 Al2O3 Fe2O3 CaO MgO Na2O K2O SO3 TiO2
    烟煤 20.0~60.0 5.0~35.0 10.0~40.0 1.0~12.0 0~5.0 0~4.0 0~3.0 0~4.0 0.5 0~15.0
    无烟煤 43.5~47.3 25.1~29.2 3.8~4.7 0.5~0.9 0.7~0.9 0.2~0.3 3.3~3.9 1.5~1.6 8.2
    次烟煤 40.0~60.0 20.0~30.0 4.0~10.0 5.0~30.0 1.0~6.0 0~2.0 0~4.0 0~2.0 1.1~1.2 1.8~2.7
    褐煤 5.0~15.0 10.0~25.0 4.0~15.0 15.0~40.0 3.0~10.0 0~6.0 0~4.0 0~10.0 0.23~1.68 0~5.0

    Table3

    粉煤灰用于水泥熟料生产研究现状
    生料组成 粉煤灰性质(质量分数/%) 处理方法 年份及参考文献
    粉煤灰、石灰石、黏土、铁粉 SiO2(45%~57%)
    Al2O3(18%~27%)
    Fe2O3(6.5%~11.5%)
    CaO(1.5%~8.9%)
    煅烧温度900~1 350 ℃ 1994,[24]
    粉煤灰、石灰石、黏土、铁粉、硅质校正原料(黄河沙) SiO2(48%~55%)
    Al2O3(26%~29%)
    Fe2O3(5.1%~6.1%)
    CaO(2.2%~4.5%)
    粉煤灰掺量5.4%~6.4% 1996,[25]
    粉煤灰、石灰石、砂岩、铁粉 SiO2(50.78%)
    Al2O3(22.64%)
    Fe2O3(4.68%)
    CaO(5.24%)
    1998,[26]
    粉煤灰、石灰石、铁粉 SiO2(57%~60%)
    Al2O3(20%)
    Fe2O3(3.7%~4.2%)
    CaO(2%~4%)
    生料控制指标:
    CaO质量分数43.8%,
    细度6%~8%
    2001,[27]
    粉煤灰、石灰石、二水石膏 SiO2(51.06%)
    Al2O3(30.54%)
    Fe2O3(3.49%)
    CaO(2.98%)
    粉煤灰掺量28%,
    最佳烧制温度1 300 ℃,
    制备出高硅硫铝酸盐水泥熟料
    2006,[28]
    粉煤灰、石灰石、硅石、矿渣、铜渣 SiO2(60~66%)
    Al2O3(9.6%~26.0%)
    CaO(1.9%~2.4%)
    粉煤灰掺量8%~20%,
    煅烧温度1 350 ℃
    2015,[22]

    Table4

    粉煤灰用做水泥或混凝土掺合料研究现状
    研究方向 原料 处理方法 效果 年份及参考文献
    粉煤灰用作水泥掺合料 粉煤灰、市场水泥厂
    基准熟料
    粉煤灰掺量8%~40% 在30%掺量范围内,可提高粉煤灰
    水泥1~2个标号
    2000,[50]
    粉煤灰用作水泥掺合料;
    粉煤灰活化
    粉煤灰、普通硅酸盐水泥、
    自配矿物激发剂
    矿物激发剂掺量8%
    石膏掺量3%
    矿物激发剂起到早强作用,石膏可弥补后期强度不足的问题 2010,[51]
    粉煤灰用作水泥掺合料 粉煤灰、氯氧镁水泥 粉煤灰掺量20%~40% 掺入粉煤灰会延长氯氧镁水泥的初、终凝时间,粉煤灰掺量20%可提高氯氧镁水泥28 d的强度 2015,[36]
    粉煤灰用作水泥掺合料;
    粉煤灰活化
    超细研磨后的CFB灰与
    PC灰、水泥
    粉煤灰与水泥混合比1∶1 超细粉煤灰水泥块强度提升,CFB灰提升更显著 2018,[43]
    粉煤灰用作混凝土掺合料;
    粉煤灰活化
    C类粉煤灰、氧化钙、
    钠基活化剂、纳米SiO2
    粉煤灰80% 制成的混凝土抗压强度16.18 MPa 2018,[52]
    粉煤灰用作混凝土掺合料 粉煤灰、轻烧氧化镁、
    粗细集料
    粉煤灰掺量40% 掺入粉煤灰的氯氧镁水泥混凝土
    300 d抗压强度39.99 MPa,高于普通硅酸盐水泥混凝土
    2021,[34]
    粉煤灰活化 粉煤灰 粉磨活化粉煤灰 制备出粒径分布在7 μm以下,比表面积为651 m2/kg的超细粉煤灰 2015,[42]
    粉煤灰活化 粉煤灰、石灰粉、磷石膏、水泥 活化处理:化学激发、
    水热激发、机械磨细
    活化处理后,粉煤灰早期和后期活性提高,可提高掺量 2017,[53]
    大掺量粉煤灰混凝土 Ⅱ级粉煤灰、42.5级普通硅酸盐水泥、粗细骨料 粉煤灰掺量50%~60% 大掺量粉煤灰混凝土强度与基准混凝土强度相当,抗碳化能力提高,收缩性能改善 2013,[40]
    大掺量粉煤灰混凝土 F级粉煤灰、水泥、硅粉 粉煤灰掺量20%~100% 80%粉煤灰取代水泥,28 d抗压强度可达到70 MPa 2018,[49]
    大掺量粉煤灰混凝土 F级粉煤灰、普通硅酸盐
    水泥、粗细骨料
    粉煤灰掺量0~60% 40%掺量下,使用性能不受影响 2020,[39]

    Table5

    粉煤灰用做碱激发胶凝材料研究现状
    原材料 激发剂类型 处理方法 处理效果 年份及参考文献
    粉煤灰 CaO和Ca(OH)2 添加3%的CaO或Ca(OH)2,环境温度固化 7 d抗压强度可达29 MPa 2009,[61]
    PC灰 NaOH-Na2SiO3混合溶液 养护温度65 ℃,NaOH浓度为15 mol/L,
    且Na2SiO3/NaOH=1(摩尔比)
    28 d抗压强度达70 MPa 2009,[62]
    PC灰 NaOH-Na2SiO3混合溶液 Na2SiO3/NaOH摩尔比为2.5,养护温度100 ℃,养护24 h 28 d抗压强度达56 MPa 2012,[63]
    PC灰 NaOH NaOH质量分数14%、养护温度115 ℃,养护时间24 h 抗压强度达120 MPa
    抗折强度达15 MPa
    2015,[64]
    F类粉煤灰 Ca(OH)2 通过添加不同含量的Ca(OH)2调控(Na+K+Ca)/Al摩尔比 (Na+K+Ca)/Al < 0.95(摩尔比)时,主要生成(C,N)-A-S-H凝胶,有利于强度的提升 2019,[65]
    高钙粉煤灰,
    再生砖粉
    NaOH-Na2SiO3混合溶液 28 d环境温度养护 Na2SiO3/NaOH摩尔比为2.5时,高钙粉煤灰基地聚物抗压强度最佳 2020,[59]
    粉煤灰,煤矸石 NaOH 机械共磨预处理,养护温度90 ℃,
    养护24 h
    制备高性能轻质地聚合物砂浆 2022,[54]
相关问题

主办单位:煤炭科学研究总院有限公司 中国煤炭学会学术期刊工作委员会

©版权所有2015 煤炭科学研究总院有限公司 地址:北京市朝阳区和平里青年沟东路煤炭大厦 邮编:100013
京ICP备05086979号-16  技术支持:云智互联