• 论文
主办单位:煤炭科学研究总院有限公司、中国煤炭学会学术期刊工作委员会
在Rh16/In2O3催化剂上催化二氧化碳加氢合成甲醇的机理:密度泛函理论与微动力学模型的联合研究
  • Title

    Mechanism of methanol synthesis from CO2 hydrogenation over Rh16/In2O3 catalysts: A combined study on density functional theory and microkinetic modeling

  • 作者

    王宇宁龚杰松周嘉斌陈志远田冬纳薇高文桂

  • Author

    WANG Yuning;GONG Jiesong;ZHOU Jiabin;CHEN Zhiyuan;TIAN Dong;NA Wei;GAO Wengui

  • 单位

    昆明理工大学 冶金与能源工程学院昆明理工大学 复杂有色金属资源清洁利用国家重点实验室培育基地昆明理工大学 冶金节能减排教育部工程研究中心

  • Organization
    Faculty of Metallurgy and Energy Engineering, Kunming University of Science and Technology
    State Key Laboratory Breeding Base of Complex Nonferrous Metal Resources Cleaning Utilization in Yunnan Province, Kunming University of Science and Technology
    Engineering Research Center of Metallurgical Energy Conservation and Emission Reduction, Ministry of Education, Kunming University of Science and Technology
  • 摘要

    本研究采用密度泛函理论 (DFT) 和微动力学模型分析了 Rh16/In2O3 催化剂上二氧化碳 (CO2) 氢化成甲醇 (CH3OH) 的情况;研究了 Rh16/In2O3 界面上 H2 的自发解离和 CO2 的有效吸附,其中, In2O3 中的氧空位提供了有利的效果。此外,Bader 电荷分析显示 Rh16 上带有轻微的正电荷,这对于理解催化剂的电子特性和活性非常重要。证实了RWGS+CO-Hydro 途径是甲醇合成的主要途径,其特点是经过一系列中间转化:CO2*→COOH*→CO*+OH*→HCO*→CH2O*→CH2OH*→ CH3OH*。在不同温度 (373−873 K) 和压力 (10−2−103 bar) 下进行的反应速率控制程度分析 (DRC) 揭示了两个关键的动力学现象,在较低温度和较高压力下,转化步骤 CO* + H* → HCO * 显著影响总体反应速率;而在较高温度下,CH2O* + H* → CH3O* 的步骤占主导地位。

  • Abstract

    In this study, the hydrogenation of carbon dioxide (CO2) to methanol (CH3OH) over Rh16/In2O3 catalyst was studied through Density Functional Theory (DFT) and microdynamics modeling. The spontaneous dissociation mechanisms of H2 and CO2 adsorption at the Rh16/In2O3 interface were investigated. The oxygen vacancies in In2O3 enhanced the adsorption process. Bader charge analysis revealed a marginal positive charge on Rh16, elucidating the critical insights into the electronic characteristics and catalytic activity. The study established the RWGS+CO-Hydro pathway as the predominant mechanism for methanol synthesis, characterized by a sequential transformation of intermediates: CO2*→COOH*→CO*+OH*→HCO*→CH2O*→CH2OH*→ CH3OH*. Furthermore, degree of Reaction Rate Control (DRC) analysis conducted in the range of 373−873 K and 10−2 to 103 bar identified two principal kinetic phenomena: at lower temperature and higher pressure, the conversion of CO* + H* to HCO* significantly impacted the overall reaction rate. Conversely, at higher temperature, the step from CH2O* + H* to CH3O* was dominate.

  • 关键词

    催化剂密度泛函理论微动力学分析氧空位浓度CO2加氢制甲醇

  • KeyWords

    catalyst;density functional theory;microdynamic analysis;oxygen vacancy concentration;CO2 hydrogenation to methanol

  • 基金项目(Foundation)
    云南省重大科技专项计划(202302AG050005-2)资助
  • DOI
  • 引用格式
    王宇宁, 龚杰松, 周嘉斌, 陈志远, 田冬, 纳薇, 高文桂. 在Rh16/In2O3催化剂上催化二氧化碳加氢合成甲醇的机理:密度泛函理论与微动力学模型的联合研究[J]. 燃料化学学报(中英文), 2024, 52(10): 1462-1474. DOI: 10.1016/S1872-5813(24)60460-3
  • Citation
    WANG Yuning, GONG Jiesong, ZHOU Jiabin, CHEN Zhiyuan, TIAN Dong, NA Wei, GAO Wengui. Mechanism of methanol synthesis from CO2 hydrogenation over Rh16/In2O3 catalysts: A combined study on density functional theory and microkinetic modeling[J]. Journal of Fuel Chemistry and Technology, 2024, 52(10): 1462-1474. DOI: 10.1016/S1872-5813(24)60460-3
  • 图表
    •  
    •  
    • 四种Rh金属团簇及其直径

    图(13) / 表(5)

相关问题

主办单位:煤炭科学研究总院有限公司 中国煤炭学会学术期刊工作委员会

©版权所有2015 煤炭科学研究总院有限公司 地址:北京市朝阳区和平里青年沟东路煤炭大厦 邮编:100013
京ICP备05086979号-16  技术支持:云智互联