• 论文
主办单位:煤炭科学研究总院有限公司、中国煤炭学会学术期刊工作委员会
基于标签相关性学习网络的多标签图像分类方法
  • Title

    A Multi-Label Image Classification Method based on Label Correlation Learning Network

  • 作者

    王路芳张海云

  • Author

    WANG Lufang;ZHANG Haiyun

  • 单位

    山西财经大学 实验实训中心山西大学 大数据科学与产业研究院山西大学 计算机与信息技术学院

  • Organization
    Experimental Training Center, Shanxi University of Finance and Economics
    Institute of Big Data Science and Industry, Shanxi University
    School of Computer and Information Technology, Shanxi University
  • 摘要

    【目的】针对多标签图像分类任务中的标签特征混乱和标签关系局限性问题,提出了一种基于标签相关性学习网络的多标签图像分类方法(MLLCLN)。【方法】采用掩码注意力方法和多头自注意力机制。在掩码注意力方法中,通过图像真实标签对应的状态词向量遮盖注意力机制产生的标签特征,使模型能获得更多上下文信息,一定程度上避免了注意力机制的注意力区域重叠的问题。设计了标签相关性学习网络,该网络是由多层多头注意力机制和图神经网络组成。多头自注意力机制能够基于标签特征学习局部标签关系,而图神经网络使用了现有的方法ML-GCN作为引导,使模型能同时考虑全局标签关系,缓解了由于标签关系局限性导致的模型出现虚假预测的问题。【结果】MLLCLN在公开数据集MSCOCO2014和VOC2007上的实验结果表明了其较好的性能,分类精度分别达到了84.4%和96.0%,为多标签图像分类提供了新思路。

  • Abstract

    【Purposes】 To meet the challenges posed by label feature confusions and limitations  in label relationships in multi-label image classification tasks, a novel approach to multi-label image  classification based on label correlation learning network (MLLCLN) is presented in this work.  【Methods】 MLLCLN adopts the methods of masked attention approach and multi-head self- attention mechanism. In the masked attention approach, the label features generated by masking the  attention mechanism with state word vectors corresponding to the real labels in the image, allowing  the model to obtain more contextual information and mitigating the issue of attention overlap in the at⁃ tention regions. This strategy effectively alleviate the issue of label feature confusion. Moreover, a la⁃ bel correlation learning network is devised, which comprises multiple layers of multi-head attention  mechanisms and a graph neural network. On the other hand, the multi-head self-attention mechanism  enables the learning of local label relationships according to the label features, while the graph neural  network incorporates the widely adopted ML-GCN method to guide the model in considering global  label relationships simultaneously, mitigating the issue of false predictions in models caused by the  limitations of label relationships. 【Findings】 The experimental results of MLLCLN on the public da⁃ tasets MSCOCO2014 and VOC2007 demonstrate its superior performance, achieving classification  accuracies of 84.4% and 96.0%, respectively. This provides a novel approach to multi-label image  classification.

  • 关键词

    多头自注意力机制多标签图像分类注意力机制自适应权重卷积神经网络

  • KeyWords

    multi-head self-attention;multi-label image classification;attention mechanism;adaptive weight;convolutional neural networks

  • 基金项目(Foundation)
    国家自然科学基金资助项目(62072291)
  • DOI
  • 引用格式
    王路芳,张海云.基于标签相关性学习网络的多标签图像分类方法[J].太原理工大学学报,2024,55(6):1097-1106.
  • Citation
    WANG Lufang,ZHANG Haiyun.A multi-label image classification method based on label correlation learning net⁃work[J].Journal of Taiyuan University of Technoloty,2024,55(6):1097-1106.
相关问题

主办单位:煤炭科学研究总院有限公司 中国煤炭学会学术期刊工作委员会

©版权所有2015 煤炭科学研究总院有限公司 地址:北京市朝阳区和平里青年沟东路煤炭大厦 邮编:100013
京ICP备05086979号-16  技术支持:云智互联