-
Title
Research on a GRU Neural Network-based Gas Emission Warning Model for Mine Working Faces
-
作者
龚选平杨鹏
-
Author
GONG Xuanping;YANG Peng
-
单位
中煤能源研究院有限责任公司
-
Organization
China Coal Energy Research Institute Co., Ltd.
-
摘要
瓦斯突出是矿井工作中的一大安全隐患,严重威胁着井下员工的人身安全和生产工作的顺利开展。建立一个可以及时防范瓦斯突出的模型对降低事故风险、保护矿工人身安全有着举足轻重的意义。造成瓦斯突出的原因有许多,这些原因造成瓦斯突出危险性的增加。在实际掘进活动中,把传感器采集到的多种信息加以综合,利用GRU神经网络强大的时间序列数据处理能力和记忆能力,构建出完整的瓦斯突出预警模型。实验结果表明,基于GRU神经网络的瓦斯突出预警模型在预测精度和分级预警效果上均表现出色,能够在关键时刻发出有效的预警信号,为煤矿安全生产提供了有力保障。
-
Abstract
Gas outburst poses a significant safety hazard in mining operations, gravely threatening the personal safety of underground workers and the smooth progress of production activities. Establishment of a model capable of promptly preventing gas outbursts is of paramount importance in reducing accident risks and safeguarding the lives of miners. Numerous factors contribute to gas outbursts, collectively increasing their risk. During actual excavation activities, by integrating various information gathered by sensors and leveraging the robust time-series data processing and memory capabilities of GRU (Gated Recurrent Unit) neural networks, a comprehensive gas outburst early warning model has been developed. Experimental results demonstrate that this GRU-based gas outburst early warning model excels in both prediction accuracy and graded warning effectiveness, enabling the issuance of effective warning signals at critical moments, thereby providing robust support for safe coal mine production.
-
关键词
GRU神经网络瓦斯突出预警模型影响因素
-
KeyWords
GRU neural network;gas emission;early warning model;influencing factors
-
基金项目(Foundation)
国家重点研发计划“储层地质参数高精度测量关键技术研究及应用”(2023YFF0615400)
-
文章目录
0引言
1基于GRU神经网络的矿井工作面瓦斯突出预警模型的理论基础
1.1瓦斯突出的影响因素
1.2 GRU神经网络的基本原理
2基于GRU神经网络的矿井工作面瓦斯突出预警模型构建
2.1 GRU输入层指标建立
2.1.1 GRU输入层指标量化规则
2.1.2 GRU输入层指标量化映射
2.2 GRU隐藏层数据建立
2.3 GRU输出层数据建立
3基于GRU神经网络的矿井工作面瓦斯突出预警模型训练测试结果
4结论
-
DOI