• 全部
主办单位:煤炭科学研究总院有限公司、中国煤炭学会学术期刊工作委员会
矿井动目标定位:挑战、现状与趋势
  • Title

    Localization techniques of mobile objects in coal mines:challenges, solutions and trends

  • 作者

    胡青松张申吴立新丁恩杰

  • Author

    HU Qing-song1,2,3 ,ZHANG Shen1,2 ,WU Li-xin3 ,DING En-jie1,2

  • 单位

    中国矿业大学物联网(感知矿山)研究中心矿山互联网应用技术国家地方联合工程实验室中国矿业大学环境与测绘学院

  • Organization
    1. Internet of Things (Perception Mine) Research Center,China University of Mining & Technology,Xuzhou  221008,China;2. The National and Local Joint Engineering Laboratory of Internet Application Technology on Mine,China University of Mining & Technology,Xuzhou  221008,China;3. School of Environ-ment Science and Spatial Informatics,China University of Mining & Technology,Xuzhou  221008,China
  • 摘要
    精确目标定位是煤矿安全高效生产的重要保障。分析了矿井动目标定位在巷道特征、采掘设备、多径特性、多址干扰、误差累积等方面面临的挑战;陈述了矿井定位的主流测距方法RSSI,TOA/TDOA,AOA/DOA;总结了最小二乘法、最大似然法、代价函数法、指纹膜法等常规位置估计方法,以及针对巷道特殊环境而设计的距离约束法、电磁波及超声波联合定位法等矿井专属位置估计方法;剖析了煤矿巷道的NLOS识别和抑制、路径损耗指数的实时计算、空间信息辅助的结果优化技术;指出了基于矿山物联网架构的定位发展趋势,借助矿山物联网的"物-物相连特征"特征,研究出性能更优的距离测量技术、位置估计方法和定位结果优化算法,理清矿井动目标定位技术层次和发展脉络,深入剖析定位精度影响因素,为矿井动目标定位研究提供参考。
  • Abstract
    The precise object localization system is a fundamental infrastructure for the safe and effective production in coal mines. Authors analyzed the key problems faced by the localization of mobile objects in coal mines,such as road- way characteristics,excavation equipment,multipath features,multi-site interferences and error accumulations. The ma- instream methods of range measurement,including RSSI,TOA / TDOA and AOA / DOA,were summarized. The authors also discussed the common position computation methods and specialized position computation methods based on the particular surroundings of roadway,respectively. The representatives of the former are least square,maximum likeli- hood,cost function and fingerprint methods,and the distance-constraint method and the joint distance measuring meth- od based on electromagnetic wave and ultrasonic wave are two typical examples of the latter. Then analyzed the optimi- zation methods of localization results,including the identification and suppression of NLOS in coal roadway,the real- time computation of path loss exponent and the optimization techniques assisted by space information. Besides,the au- thors proposed the development trend of localization framework based on internet of coal things. With the idea that everything is connected with each other, one can work out better distance measuring technologies, position estimating methods and result optimizing algorithms. The paper strived to clarify the technology levels and development venation of the localization of mobile objects in coal mines and analyze the influential factors of localization precision in de- tailed.
  • 关键词

    矿山物联网感知矿山目标定位煤矿巷道工作面

  • KeyWords

    internet of mine things;perception mine;object localization;coal roadway;working face

  • 基金项目(Foundation)
    国家自然科学基金资助项目(51204177);国家科技支撑计划资助项目(2013BAK06B05);江苏省自然科学基金资助项目(BK20151148);
  • DOI
  • Citation
    Hu Qingsong,Zhang Shen,Wu Lixin,et al. Localization techniques of mobile objects in coal mines:challenges,solutions and trends[ J]. Journal of China Coal Society,2016,41(5):1059-1068.
  • 相关文章
相关问题

主办单位:煤炭科学研究总院有限公司 中国煤炭学会学术期刊工作委员会

©版权所有2015 煤炭科学研究总院有限公司 地址:北京市朝阳区和平里青年沟东路煤炭大厦 邮编:100013
京ICP备05086979号-16  技术支持:云智互联