• 论文
主办单位:煤炭科学研究总院有限公司、中国煤炭学会学术期刊工作委员会
AGO-BP神经网络在主要影响角正切求取中的应用
  • 作者

    吴朝阳李宁

  • 单位

    中国矿业大学资源与地球科学学院

  • 摘要
    主要影响角正切tanβ是用概率积分法进行开采沉陷预计的主要参数之一,决定着地表沉陷的影响范围。指出了影响主要影响角正切的主要地质采矿因素,并根据一些矿区的实际观测资料,建立了求取主要影响角正切的AGO-BP神经网络模型。该模型是首先运用灰色理论中的累加算法对选定的原始计算数据进行预处理,然后采用BP神经网络模型计算主要影响角正切。AGO-BP神经网络模型不仅能够自动调整网络参数,而且避免只采用BP神经网络进行计算时可能出现的模型不稳定问题,所得到的主要影响角正切精度有一定的提高。
  • 关键词

    主要影响角正切BP神经网络数据累加地表沉陷

相关问题

主办单位:煤炭科学研究总院有限公司 中国煤炭学会学术期刊工作委员会

©版权所有2015 煤炭科学研究总院有限公司 地址:北京市朝阳区和平里青年沟东路煤炭大厦 邮编:100013
京ICP备05086979号-16  技术支持:云智互联