滑坡在我国是一种极为频发的地质灾害,且其积累位移监测曲线有着复杂的非线性特性,对此各研究者建立过许多预测模型,然而这些模型的预测精度不尽如人意。基于Elman神经网络可以任意精度逼近任意非线性函数的特征,并以sigmoid为方程的核函数,在选择隐含层数时用了试用法,通过"3δ"法及归一化工程实例滑坡累积位移数据,建立了Elman神经网络动态预测模型。基于该模型对多个监测点数据进行动态预测,结果表明该模型的预测结果与实测数据的吻合度较高,且平均误差为1.78%,预测精度较高,验证了Elman神经网络能够在预测滑坡灾害中发挥一定作用。
主办单位:煤炭科学研究总院有限公司 中国煤炭学会学术期刊工作委员会