• 论文
主办单位:煤炭科学研究总院有限公司、中国煤炭学会学术期刊工作委员会
煤矿综采工作面瓦斯浓度预测模型
  • 作者

    李欢贾佳杨秀宇宋春儒

  • 摘要

    针对基于最小二乘支持向量机(LS-SVM)的瓦斯浓度预测方法进行参数优化时存在的易陷入局部最优解、搜索效率较低、易产生早熟收敛等问题,提出了一种基于改进蚁群算法-最小二乘支持向量机(ACO-LSSVM)的瓦斯浓度预测模型。首先,对采集的大量煤矿综采工作面瓦斯数据进行k-means聚类分析,以降低数据维数;然后,采用改进蚁群算法对LS-SVM的惩罚参数和核函数参数进行寻优,再代入LS-SVM模型中进行回归预测。仿真结果表明,当瓦斯体积分数绝对误差阈值分别为0.03%,0.04%,0.05%时,基于ACO-LS-SVM的瓦斯浓度预测模型的预测准确度都在95%左右,比SVM模型和LS-SVM模型表现更好。

  • 关键词

    综采工作面瓦斯浓度预测蚁群算法最小二乘支持向量机k-means聚类分析参数寻优

  • 相关专题
相关问题

主办单位:煤炭科学研究总院有限公司 中国煤炭学会学术期刊工作委员会

©版权所有2015 煤炭科学研究总院有限公司 地址:北京市朝阳区和平里青年沟东路煤炭大厦 邮编:100013
京ICP备05086979号-16  技术支持:云智互联