马海龙
北京天地龙跃科技有限公司
为解决采用单一特征量预测轴承剩余寿命误差较大、有限数据样本条件下轴承剩余寿命难以估算的问题,提出了一种基于主元特征融合和支持向量机(SVM)的轴承剩余寿命预测方法。该方法采集振动加速度信号构建数据样本,提取有效值、峰值、小波熵等表征轴承退化趋势的特征指标;采用主元分析融合多个特征指标,消除特征间的冗余和相关性,构造出相对多特征的退化特征量;将退化特征量输入SVM模型中进行轴承剩余寿命预测。现场工程应用结果表明,基于主元特征融合和SVM的轴承剩余寿命预测方法可在小样本条件下筛选出包含信号绝大部分信息的主元,从而在保证预测精度的同时,减少了计算量。
轴承剩余寿命预测 主元特征融合 支持向量机 主元分析 退化特征量
主办单位:煤炭科学研究总院有限公司 中国煤炭学会学术期刊工作委员会