• 全部
主办单位:煤炭科学研究总院有限公司、中国煤炭学会学术期刊工作委员会
基于降维模糊C 均值聚类算法的采动场地稳定性评价
  • Title

    Stability evaluation of mining -induced goaf site based on dimensionality reduction fuzzy C-means, clustering algorithm

  • 作者

    郭松郭广礼李怀展崔海尚

  • Author

    GUO Song GUO Guangli LI Huaizhan CUI Haishang

  • 单位

    中国矿业大学江苏省资源环境信息工程重点实验室,中国矿业大学环境与测绘学院,中国矿业大学信息与控制工程学院

  • Organization
    Jiangsu Key Laboratory of Resources and Environment Information Engineering,China University of Mining and
    Technology School of Environment Science and Spatial Informatics,China University of Mining and Technology
    School of Information and Control Engineering,China University of Mining and Technology
  • 摘要

    模糊聚类分析是无监督机器学习的主要技术之一,可用于进行数据分析和建模,模糊C均值聚类算法(Fuzzy C-Means,FCM)通过优化目标函数得到所有类中心样本点的隶属度以实现样本数据的自动聚类目的,但面对煤矿采空区场地稳定性评价影响因素多、数据样本大时,容易陷入局部鞍点问题,提出了一种基于主成分分析(PCA)降维的改进模糊聚类算法。该算法选取7个采空区场地稳定性影响因素构建评价体系,根据主成分降维后的样本信息对模糊C均值聚类模型初始类中心和隶属度参数进行动态优化,以提升算法的鲁棒性与泛化能力;使算法更适用于评价稳定性影响因素复杂的采空区场地。以山东省济宁市快速路任兴路段压覆工作面采空区为例,结合快速路沿线其他5个煤矿共计120个采空区场地稳定性评价。试验结果表明:样本数据经主成分分析降维后,前4个主成分的累计贡献率为81.86%,有较好的表征原始样本信息的解释能力。对模糊C均值聚类后的类(簇)样本集占比进行统计分析,其中“稳定”路段占比36.67%,“基本稳定”路段占比35%,“欠稳定-不稳定”路段占比为28.33%,对比各采空区场地实际稳定性状态,模糊C均值聚类算法能有效提高聚类精度,证明了所提出的方法应用于煤矿采空区场地稳定性评价的可行性和有效性。


  • Abstract
    Fuzzy cluster analysis is one of the main techniques of unsupervised machine learning,which can be used for data analysis and modeling.Fuzzy C-Mean s( FCM) clustering algorithm obtains membership degree of sample points to all class centers by optimizing objective function to achieve the purpose of automatically cl ustering sample data. However,in facing of large data samples with complex factors influencing the assessment of goaf site stability in colliery,it is easy to fall into local saddle points.In order to solve this problem,it is proposed an improved FCM algorithm based on Principal Components Analysis( PCA) dimensionality reduction in this p aper.Combining the theory of machine learning,the improved algorithm selects 7 colliery goaf area stability influence factors to construct assessment index system. Acc ording to dimensionality reduction after initial class center of FCM model, sample information and membership parameters for dynamic optimization,the robustness and generalization ability of FCM has been improved to suit for the stability evaluation of complex factors in colliery goaf area.In this experiment, 120 working face goaf cond itions of a colliery buried under Renxing Road section and five other coal mines of Jining expressway in Shandong Province were selected as samples for goaf area sta bility influence ,the experimental results showed that sample data after PCA dimensionality reduction,first four principal components of cumulative contribution rate was 81.86%,it has better ability to interpret original sample information. After fuzzy C-means clustering clustering,the proportion of the sample set was statitically analyzed, “Stable"sections accounting for 36.67%,"Basically Stable' accounting for 35%,“Understable and instbility' 'section of 28.33% ,compared to actual stability state of goaf-co llapse area,the fuzzy C-means algorithm can effectively improve clustering accuracy. In this paper,the proposed approach demonstrates the feaibility and effectiveness in field stability assessment of goaf.
  • 关键词

    主成分分析模糊C均值聚类采空区稳定性评价机器学习

  • KeyWords

    principal component analysis; fuzzy C-means clustering; colliery goaf; stability evaluation; machine learning;

  • 相关文章
  • 相关专题
  • 图表
    •  
    •  
    • 改进的模糊C均值算法流程

    图(6) / 表(0)

相关问题

主办单位:煤炭科学研究总院有限公司 中国煤炭学会学术期刊工作委员会

©版权所有2015 煤炭科学研究总院有限公司 地址:北京市朝阳区和平里青年沟东路煤炭大厦 邮编:100013
京ICP备05086979号-16  技术支持:云智互联