• 论文
主办单位:煤炭科学研究总院有限公司、中国煤炭学会学术期刊工作委员会
基于无人机影像的采动地表裂缝特征研究
  • Title

    Research on characteristics of mining-induced surface cracks based on UAV images

  • 作者

    汤伏全李林宽李小涛刘世伟

  • Author

    TANG Fuquan LI Linkuan LI Xiaotao LIU Shiwei

  • 单位

    西安科技大学测绘科学与技术学院自然资源部煤炭资源勘查与综合利用重点试验室,陕西省一八五煤田地质有限公司

  • Organization
    Institute of Surveying and Mapping Science and Engineering,Xi'an University of Technology Key Laboratory of Coal
    Resources Exploration and Comprehensive Utilization,Ministry of Natural Resources Shaanxi No. 185 Coalfield
    Geology Co.,Ltd.
  • 摘要

    地下采煤引起的地表裂缝是开采沉陷破坏的直观表现,对建筑物和土地造成严重损害,精准地获取采动地表裂缝发育特征对于开采沉陷研究和矿区地面保护具有实际意义。目前采集沉陷区裂缝信息的主要方式是实地人工测量或卫星遥感影像解译,在成本效率和时空分辨率方面存在明显局限性。以榆神矿区某矿综放工作面地表为试验区域,利用低空无人机摄影测量系统通过设定合理的航拍参数,获取采煤沉陷区数字正射影像,分别采用Canny算法、支持矢量机(SVM)以及最大似然法(MLM)对影像中的裂缝进行特征提取,并定义裂缝提取率来评价裂缝图像的提取效果。结果表明,Canny算法提取的非裂缝信息较多,支持矢量机算法效果次之,最大似然法在裂缝长度和宽度信息提取上效果较好,但得到的裂缝图像中仍存在大量的干枯植被信息。为此,利用随机森林(RF)算法对影像进行植被分类和腐蚀操作后,制作成掩膜文件以消除植被影响,再采用最大似然法进行地表裂缝的精提取。根据地表裂缝图像的灰度特征,将试验区采动裂缝分为开裂式台阶裂缝、闭合式台阶裂缝、凹陷式裂缝、条纹式裂缝、裂纹式裂缝、凹陷式闭合台阶裂缝,并将图像提取的地表裂缝信息与实测结果进行对比,验证了低空无人机影像自动提取裂缝的可靠性,为定量分析和揭示采煤沉陷区裂缝发育规律提供了有效的技术手段。




  • Abstract
    Surface fractures caused by underground coal mining are the intuitive manifestation of mining subsidence failure. It is of great significance for mining su bsidence research and mining surface protection to accurately obtain fracture development characteristics in the subsidence area. At present, the main method of collect ng mine fracture information is field measurement or satellite remote sensing image interpretation,which has obvious limitations in cost efficiency and spatial and temp oral resolution. In this paper,the surface of a fully mechanized caving face of a mine in Yushan Mining area is taken as the test area,and the digital orthometric image of the mining subsidence area is obtained by means of low-altitude uav photometric measurement technology. Canny algorithm,support vector machine( SVM)and Maximu m likelihood method are respectively used to extract the characteristics of mining surface fractures. The results show that the maximum likelihood method is effective in extracting the information of crack length and width,but there is a lot of information of dry vegetation in the obtained crack image. For this purpose,the random forest( R F) algorithm was used to classify vegetation and perform corrosion operations on the images, and mask files were prepared to eliminate the influence of vegetation. The n,maximum likelihood method was used to accurately extract surface fractures. According to the gray scale characteristics of surface fracture images,the mining cracks in the test area can be divided into crack type stair steps,closed type fractures and sag type,striped cracks,cracks,dents type crack closure steps.In addition,the surface fracture information extracted from the image was compared with the measured results to verify the reliability of the low-altitude UAV image automatic fracture extractio n,which provides an effective technical means for quantitative analysis and revealing the development law of fractures in mining subsidence areas.
  • 关键词

    无人机数字正射影像开采沉陷采动裂缝特征提取

  • KeyWords

    UAV; digital orthophoto; mining subsidence; mining-induced crack; feature extraction;

  • 相关文章
  • 相关专题
  • 图表
    •  
    •  
    • 沉陷区影像处理及裂缝提取流程

    图(7) / 表(0)

相关问题

主办单位:煤炭科学研究总院有限公司 中国煤炭学会学术期刊工作委员会

©版权所有2015 煤炭科学研究总院有限公司 地址:北京市朝阳区和平里青年沟东路煤炭大厦 邮编:100013
京ICP备05086979号-16  技术支持:云智互联