针对煤矿散装物料装车过程中偏载严重、误差大等问题,提出了一种基于烟花算法(FWA)优化递归模糊神经网络(RFNN)的散装物料智能装车系统。将列车车厢速度的实测值与设定值进行比较,得到偏差作为RFNN控制器的输入,通过RFNN控制器对偏差进行模糊化、动态记忆调节、去模糊化等处理,并利用FWA对RFNN权重进行优化,使RFNN控制器自适应输出修正后的控制参数;依据散装物料装车计量模型,根据各传感器采集的物料质量、物料高度、车厢装载过程中的行驶距离及RFNN控制器输出的控制参数,求得所需调节的牵引电动机频率,进而改变牵引电动机转速,从而调整列车车厢速度,实现散装物料的无偏载装车。实际应用表明,经FWA优化后的RFNN控制器可快速调节车厢速度,且保持速度稳定,满足多车厢分布均衡装载的要求,同时提高了装车精度。
主办单位:煤炭科学研究总院有限公司 中国煤炭学会学术期刊工作委员会