摘要
针对传统目标跟踪算法在目标形变、遮挡或光照变化等复杂场景下容易丢失目标的问题,提出了一种融合多特征的复杂场景动态目标长时间视觉跟踪算法,该算法基于跟踪学习检测(TLD)框架,首先,利用高斯二阶滤波器提取跟踪目标在不同方向的纹理信息,通过纹理信息采用Hessian矩阵计算图像曲面的主曲率,融合主曲率与RGB颜色信息建立目标特征概率直方图模型;然后,使用融合多特征的Mean Shift算法替代TLD框架中的光流法,降低跟踪模块的计算复杂度;最后,采用P-N学习策略构建快速级联检测器,实现跟踪失败时准确检测并重新初始化跟踪器快速修正跟踪结果.在OTB-50公开数据集和煤矿井下巷道视频上进行动态目标跟踪测试.结果表明:所提算法能够实现目标形变、遮挡或光照变化等复杂场景动态目标长时间跟踪,具有较高的鲁棒性和跟踪精度.