• 全部
主办单位:煤炭科学研究总院有限公司、中国煤炭学会学术期刊工作委员会
基于DIC和YOLO算法的复杂裂隙岩石破坏过程动态裂隙早期智能识别
  • Title

    Early and intelligent recognition of dynamic cracks during damage of complex fractured rock masses based on DIC and YOLO algorithms

  • 作者

    张庆贺陈晨袁亮方致远李翎蒋博文

  • Author

    ZHANG Qinghe;CHEN Chen;YUAN Liang;ZHANG Tong;FANG Zhiyuan;LI Ling;JIANG Bowen

  • 单位

    安徽理工大学深部煤矿采动响应与灾害防控国家重点实验室合肥综合性国家科学中心能源研究院(安徽省能源实验室)安徽理工大学土木建筑学院安徽理工大学计算机科学与工程学院

  • Organization
    State Key Laboratory Mine Response and Disaster Prevention and Control in Deep Coal Mine,Anhui University of Science and Technology
    Institute of Energy,Hefei Comprehensive National Science Center
    School of Civil Engineering and Architecture,Anhui University of Science and Technology
    School of Computer Science and Engineering,Anhui University of Science and Tech⁃nology
  • 摘要

    为了定量研究复杂裂隙岩石变形破坏规律和裂隙扩展特征,利用裂隙网络模型 3D 打印技术制作了含20条随机节理的类岩石试件,利用数字图像相关方法(DIC)研究了试件破坏过程中应变场演化过程,并分析了每一条裂隙的扩展过程,探讨了动态裂隙对试件整体强度的影响。在此基础上,基于YOLOv5深度学习网络模型,结合DIC云图,提出了一种智能精准识别动态裂隙的算法。研究表明:含复杂裂隙试件破坏过程中往往伴随多条裂隙同时扩展和贯通,试件整体强度与动态裂隙扩展具有重要关系,统计动态裂隙的扩展情况可以半定量的判定试件整体强度。在每一条原生裂隙起裂前,总是首先出现应变集中区域,并且应变集中区域具有前兆性,预示着新裂纹的萌生。原生裂隙的动态演化基本可以分为原生裂隙、应变集中区、新生裂纹和交叉裂隙四种类型,其中,新生裂纹和交叉裂隙对试件整体强度影响最大。提出的智能精准识别动态裂隙算法的精确率、召回率和mAP都在80%以上,且mAP最高达到了91%,GIoU损失参数迭代训练后达到0.01,四种类型裂隙相对应的F1值分别为83%、89%、87%和85%,四种类型裂隙的总体识别精度可达86%。说明该方法在复杂裂隙岩体裂纹识别、定位分类是快速精确有效的。试件在受载时,智能识别算法重点识别并统计新生裂纹和交叉裂隙数量,当新生裂隙和交叉裂隙数量较多时,试件即将破坏,可提前进行预警。本方法可为复杂裂隙岩体破坏的智能监测和破坏预警提供新思路、新方法。

  • Abstract

    In order to quantitatively study the deformation and failure laws of complex fractured rocks and the charac⁃teristics of fracture expansion,the fracture network model 3D printing technology was used to produce rock⁃like speci⁃mens with 20 random joints,and the digital image correlation method(DIC)was used to study the strain field dur⁃ing the failure process of the specimens. The evolution process is analyzed,and the expansion process of each crack isanalyzed,and the influence of dynamic cracks on the overall strength of the specimen is discussed. Based on theYOLOv5 deep learning network model,combined with the DIC cloud image,an algorithm for intelligent and accurateidentification of dynamic cracks is proposed. Studies have shown that the failure process of specimens with com⁃plex cracks is often accompanied by the expansion and penetration of multiple cracks. The overall strength of the spec⁃imens has an important relationship with the expansion of dynamic cracks. Statistics on the expansion ofdynamic cracks can determine the overall strength of the specimens semi⁃quantitatively. Before each original crackstarts to crack,the strain⁃concentrated area always appears first,and the strain⁃concentrated area has precursory prop⁃erties,which indicates the initiation of new cracks. The dynamic evolution of primary cracks can be basically dividedinto four types: primary cracks, strain concentration zone, new cracks and cross cracks. Among them, crosscracks have the greatest impact on the overall strength of the specimen. The accuracy,recall,and PmA of the proposedintelligent and accurate identification of dynamic fissure algorithms are all above 80%,and the maximum average accu⁃racy mean ( PmA ) is 91%. The GIoU loss parameter reaches 0. 01 after iterative training. The F1 valuescorresponding to the four types of fissures are respectively 83%,89%,87% and 85%,the overall recognition accuracyof the four types of cracks can reach 86%. It shows that this method is fast,accurate and effective in the identification,location and classification of cracks in complex fractured rock masses.

  • 关键词

    裂隙岩体数字图像相关技术目标检测YOLOv5裂纹分类识别

  • KeyWords

    fractured rock masses;digital image correlation techniques;target detection;YOLOv5;fracture classification and recognition

  • 相关专题
  • 图表
    •  
    •  
    • 应力-应变曲线

    图(12) / 表(0)

相关问题

主办单位:煤炭科学研究总院有限公司 中国煤炭学会学术期刊工作委员会

©版权所有2015 煤炭科学研究总院有限公司 地址:北京市朝阳区和平里青年沟东路煤炭大厦 邮编:100013
京ICP备05086979号-16  技术支持:云智互联