• 论文
主办单位:煤炭科学研究总院有限公司、中国煤炭学会学术期刊工作委员会
基于图像的煤矸分选中图像照度调节方法
  • Title

    Illuminance adjustment method for image⁃based coal and gangue separation

  • 作者

    李曼杨茂林刘长岳何仙利段雍

  • Author

    LI Man,YANG Maolin,LIU Changyue,HE Xianli,DUAN Yong

  • 单位

    西安科技大学 机械工程学院陕西省矿山机电装备智能监测重点实验室韩城矿业有限公司

  • Organization
    School of Mechanical Engineering,Xi’an University of Science and Technology;Shanxi Key Laboratory of Mine Electromechanical Equipment Intelligent Monitoring;Hancheng Mining Co.,Ltd.
  • 摘要

    针对基于图像的煤矸分选中由于生产环境中粉尘水雾电磁干扰以及光源设备等因素, 引起图像照度变化影响图像质量降低识别率的问题提出一种基于快速引导滤波的 Retinex 算 法通过去除原始照度分量添加合适的照度分量实现图像整体亮度的调节。 采用 2 5004 000, 5 5007 000 lux 四种照度模拟实际工况环境照度的变化并采集韩城矿区的瘦煤和页岩铜川陈家 山矿区的弱黏煤和粉砂岩不同类型的煤和矸石图像建立图像样本库。 对获取的图像通过添加0.1 为间隔0.1~0.9的光照因子进行图像强化。 选取煤和矸石图像具有较大差异的标准差和熵2个 特征参数分析增强前后煤和矸石图像 个特征参数变化规律以及 者标准差差值和熵差值的变 化规律。 将标准差差值和熵差值进行融合归一化以最大差值法得到 个矿区 种照度下对应最 佳的光照因子。 以 LSSVM 为分类器标准差和熵为输入向量进行训练和识别验证。 结果显示:采 用最佳光照因子图像增强后2 5004 0005 5007 000 lux 四种照度下韩城矿区样本相对未增强 前识别率分别增加了 7.5%8.0%8.5%2.0%陈家山矿区样本识别率分别增加了 0.5%12.0%, 17.0%25.0%每张图像增强时间平均为 0.031 s


  • Abstract

    Image⁃based coal and gangue separation is susceptible to dust,water mist,electromagnetic interference and light produced by equipment,whose factors change the environmental illuminance and further decrease image quality. This paper solves this problem by proposing a Retinex algorithm based on fast⁃guided filtering,which adjusts the brightness of the images by replacing the original illuminance component with a more suitable one. Firstly,this paper builds an image dataset consisting of lean coal and shale from Hancheng city and weakly caking coal and siltstone from Chenjia mountain mining area,and simulates the environmental illuminance of the actual working conditions by using four illuminances including 2 500,4 000,5 500 and 7 000 lux. Secondly,as the images are enhanced by adding a light factor of 0.1 with the interval in the scope of 0.1-0.9,this paper analyzes how the standard⁃deviation and entropy of the images change before and after the enhancing,as well as the difference of standard⁃deviation and the difference of entropy between coal and gangue images. After normalizing the difference of the standard deviation and the differ⁃ ence of entropy, the best light factor corresponding to the four illuminances is obtained by the maximum differ⁃ ence method. Using LSSVM as the classifier,trained and validated using entropy and standard deviation as the input vectors,the results show that the image recognition rate using the best light factor for image enhancing under the four illuminances is increased by 7.5%,8.0%,8.5%,2.0% respectively in the samples from Hancheng City,and 0.5%, 12.0%,17.0%,25.0% respectively in the samples from Chenjia mountain. The average time of image enhancement is 0.031 s.


  • 关键词

    照度Retinex快速引导滤波灰度纹理LSSVM

  • KeyWords

    illuminance;Retinex;fast⁃guided filtering;grayscale;texture;LSSVM

  • 引用格式
    李曼,杨茂林,刘长岳,等. 基于图像的煤矸分选中图像照度调节方法[J]. 煤炭学报,2021,46(S2):1149-1158.
  • Citation
    LI Man,YANG Maolin,LIU Changyue,et al. Illuminance adjustment method for image⁃based coal and gangue separation[J]. Journal of China Coal Society,2021,46(S2):1149-1158.
  • 相关文章
相关问题

主办单位:煤炭科学研究总院有限公司 中国煤炭学会学术期刊工作委员会

©版权所有2015 煤炭科学研究总院有限公司 地址:北京市朝阳区和平里青年沟东路煤炭大厦 邮编:100013
京ICP备05086979号-16  技术支持:云智互联