Experimental study on CO2 adsorption and displacement of methane incoals: An NMR relaxation method
ZHENG Sijian,SANG Shuxun,YAO Yanbin,LIU Dameng,LIU Shiqi
中国矿业大学 碳中和研究院中国矿业大学 江苏省煤基温室气体减排与资源化利用重点实验室中国矿业大学 资源与地球科学学院中国地质大学(北京) 能源学院煤层气开发利用国家工程研究中 心煤储层物性实验室
注 CO2 强化煤层气开采( CO2 -ECBM) 过程的实质是吸附态甲烷在 CO2 -CH4 竞争吸附作用 下相变为游离态的过程,研究煤岩注 CO2 吸附置换甲烷的动态化相变过程对于理解 CO2 -ECBM 微 观作用机理和现场工程实施具有重要的理论意义和工程价值。 基于低场核磁共振技术开展一系列 不同压力状态下游离态甲烷实验,首先建立游离态甲烷核磁共振标定系数;随后选取准噶尔盆地南 缘长焰煤和沁水盆地无烟煤,基于自主研发搭建的低场核磁共振 CO2 置换 CH4 装置开展不同注入 压力、不同温度约束条件下 CO2 吸附置换 CH4 核磁共振实验,建立吸附态甲烷核磁共振标定系数, 并定量评价不同煤阶煤样CO2注入压力及实验温度对置换甲烷微观作用机理。 结果表明:煤岩甲 烷吸附核磁共振 T2弛豫谱呈三峰分布,从左至右分别代表了吸附态甲烷(P1 峰)、颗粒间游离态甲 烷(P2 峰)和自由空间游离态甲烷核磁共振响应(P3 峰);随着 CO2注入气体压力的增大,煤岩吸附 态甲烷核磁共振信号幅度明显减小;而随着 CO2 置换甲烷实验温度的增加,游离态甲烷核磁共振信 号幅度(P2 和 P3 峰)呈下降趋势。 煤岩注 CO2 吸附置换 CH4 过程中,最大甲烷吸附量随 CO2 注入 气体压力的变化呈明显两阶段分布特征:低压阶段,最大甲烷吸附量随 CO2 压力明显下降;高压阶 段最大甲烷吸附量的变化趋于平缓;同时,煤储层温度的升高会降低煤样 CO2 置换甲烷的能力。
The essence of CO2 injection for enhancing coalbed methane recovery (CO2-ECBM) is the transformation of adsorbed methane to free phased due to the CO2-CH4 competitive adsorption characterizations in coals. The investigation of the realtime dynamic evolution of native adsorbed and rejected nonadsorbed methane during the process of CO2-ECBM has a dual desirable benefit both in theoretical and engineering research. The authors first determined the nuclear magmatic resonance (NMR) calibration coefficient of free methane based on a series of free methane NMR experiments, without coals in the sample cell. After that, two contrasting long flame coal and anthracite collected from the Southern Junggar Basin and Qinshui Basin, respectively, were applied for exploring the characterizations of methane desorption and CO2 displacement under different CO2 injection pressures or different experimental temperatures using the selfdesigned NMRbased CO2 displace methane equipment. The NMR calibration coefficients of adsorbed methane were determined and further used for quantitatively characterizing the dynamic process of CO2 adsorption and displacement in coals. Results show that the NMR transverse relaxation time (T2) distributions of methane adsorption in coals exhibit three peaks, labeled from left to right as P1, P2, and P3, corresponding to the NMR relaxation of adsorbed methane, free methane in interparticles, and free methane occurs at headspace of the sample cell. With the increase of CO2 injection pressure, the NMR amplitude of adsorbed methane presents a significant decrease trend. Meanwhile, the NMR amplitude of free methane (P2 and P3 peak) decreases with the increase of experimental temperature. In the process of methane desorption and CO2 displacement, the maximum methane adsorption capacity following increase CO2 injection pressure occurs in two stages: a rapid initial decline under low gas pressure stages, followed by a slower tail in high gas pressure stages. Additionally, the CO2 displacement capacity decreases with the increase of coal reservoir temperature.
coalbed methane; NMR; CO2-ECBM; methane adsorption capacity; CO2 geological sequestration
主办单位:煤炭科学研究总院有限公司 中国煤炭学会学术期刊工作委员会