• 全部
主办单位:煤炭科学研究总院有限公司、中国煤炭学会学术期刊工作委员会
冲击荷载作用下各向异性煤体中大孔结构变化规律研究
  • 作者

    梁为民 李晓鹏 李敏敏

  • Author

    LIANG Weimin,LI Xiaopeng, LI Minmin

  • 单位

    河南理工大学土木工程学院

  • Organization
    School of Civil Engineering,Henan Polytechnic University
  • 摘要

    为了研究冲击荷载对煤岩体孔隙结构中中大孔结构的影响,能够为煤层增透中爆破致裂技术参数的设置提供相关理论依据,对结构异性(垂直于层理方向、平行于层理方向)煤岩体采用分离式霍普金森压杆(Split Hopkinson Pressure Bar,SHPB)冲击试验,进行不同冲击气压(0.1、0.15、0.2、0.3、0.5 MPa)下的动态力学性能测试,然后利用压汞试验对不同冲击荷载下结构异性煤岩体进行孔径结构分析,进而探讨冲击荷载对结构异性煤岩体中中大孔结构的影响规律。结果表明:煤样的动态抗压强度随着冲击荷载的增加呈线性增加,当冲击荷载相同时,垂直层理方向煤样的动态抗压强度均大于平行层理方向。冲击荷载和层理方向对煤样的进退汞曲线特征、孔隙度、退汞效率和孔径分布均有影响,〖JP2〗当冲击气压为0.5 MPa时,对应垂直层理和平行层理方向动态抗压强度分别为29.624、24.339 MPa,〖JP〗较未受冲击荷载相比,垂直层理方向和平行层理方向煤样进汞量分别增加188%、205%,孔隙度分别增加155%、198%,退汞效率分别减少32%、69%,孔径分布中孔容最大值分别增加472%、492%。不同层理方向冲击荷载对煤样的孔隙结构的改善效果不同,当冲击荷载相同时,平行层理方向煤样的进汞量、孔隙度、退汞效率、孔容最大值,分别为垂直层理方向煤样的1.05、1.35、0.46和1.40倍。总体上,冲击荷载越大,煤样总孔容增量越大,且平行层理方向煤样总孔容增量大于垂直层理方向。

  • Abstract

    In order to study the evolution of the macroporous structure in anisotropic coal and rock mass, which can provide relevant theoretical basis for the setting of technical parameters of blasting and fracturing in coal seam enhancement, the Split Hopkinson Pressure Bar (SHPB) impact test was conducted to evaluate the dynamic mechanical performance of anisotropic coal samples under various impact pressures (0.1、0.15、0.2、0.3、0.5 MPa). In addition, the mercury intrusion test was performed to analyze the pore structure of coal samples under different impact loads, and to further reveal the evolution of the macroporous str ucture in the coal and rock mass under impact loads. Experimental results show that the dynamic compressive strength of coal samples increases linearly with the increase of impact load, and the greatest dynamic compressive strength is confirmed in coal samples perpendicular to the bedding direction. When the impact pressure is 0.5 MPa, the corresponding dynamic compressive strength in the direction of vertical bedding and parallel bedding is 29.624 MPa and 24.339 MPa respectively. Compared with that without impact load, the mercury content of coal samples in the direction of vertical bedding and parallel bedding increases by 188% and 205% respectively, the porosity increases by 155% and 198% respectively, the mercury removal efficiency decreases by 32% and 69% respectively, and the maximum pore volume in the pore size distribution increases by 472% and 492% respectively.When the impact load is the same, the maximum mercury input, porosity, mercury removal efficiency and pore volume of coal samples in the parallel bedding direction are 1.05 times, 1.35 times, 0.46 times and 1.40 times of those in the vertical bedding direction, respectively. In conclusion, a greater impact load would result in a greater total pore volume increment in the coal sample, also a greater total pore volume increment is exhibited in the coal sample parallel to the bedding direction relative to that perpendicular to the bedding direction.


  • 关键词

    煤岩孔隙冲击荷载霍普金森压杆结构异性压汞试验中大孔

  • KeyWords

    coal porosity impact load; Split Hopkinson Pressure Bar; anisotropy; mercury intrusion method; middle and big holes

  • 引用格式
    梁为民,李晓鹏,李敏敏.冲击荷载作用下各向异性煤体中大孔结构变化规律研究[J].煤炭科学技术,2022,50(11):100-109
  • Citation
    LIANG Weimin,LI Xiaopeng, LI Minmin.Study on the evolution of macropore structure in anisotropic coal under impact load
    [J].Coal Science and Technology,2022,50(11):100-109
相关问题
立即提问

主办单位:煤炭科学研究总院有限公司 中国煤炭学会学术期刊工作委员会

©版权所有2015 煤炭科学研究总院有限公司 地址:北京市朝阳区和平里青年沟东路煤炭大厦 邮编:100013
京ICP备05086979号-16  技术支持:云智互联