• 全部
主办单位:煤炭科学研究总院有限公司、中国煤炭学会学术期刊工作委员会
煤矿回采工作面智能地质保障技术进展与思考
  • Title

    Progress and reflection of intelligent geological guarantee technology in coal mining face

  • 作者

    王国法张建中薛国华刘再斌刘清李梅刘军锋程健张学亮

  • Author

    WANG Guofa;ZHANG Jianzhong;XUE Guohua;LIU Zaibin;LIU Qing;LI Mei;LIU Junfeng;CHENG Jian;ZHANG Xueliang

  • 单位

    中国煤炭科工集团有限公司煤炭科学研究总院有限公司天地科技股份有限公司北京技术研究分公司陕西陕煤黄陵矿业一号煤矿有限公司中煤科工西安研究院(集团)有限公司北京天玛智控科技股份有限公司北京大学遥感与地理信息系统研究所煤炭工业规划设计研究院有限公司

  • Organization
    China Coal Technology & Engineering Group Co., Ltd.
    CCTEG Chinese Institute of Coal Science
    Beijing Technology Research Branch, CCTEG Tiandi Science & Technology Co., Ltd.
    Huangling Mining Group Co., Ltd.
    CCTEG Xi’an Research Institute (Group) Co., Ltd.
    CCTEG Beijing Tianma Intelligent Control Technology Co., Ltd.
    Institute of Remote Sensing and Geographic Informationg System, Peking University
    CCTEG Coal Industry Planning Institute,Beijing 100120
  • 摘要
    煤矿地质保障技术是实现煤炭精准开采和绿色采矿的关键路径,针对智能开采需求和地质保障要求,分析了回采工作面地质保障主要面临的难题,包括基础理论研究薄弱、地质探测精度不足、建模精度无法满足工程应用、模型动态更新困难、缺乏基于时空演变的智能回采全局路径最优决策手段等。根据面临的难题和技术现状,对陕西延安黄陵一矿和陕西神木榆家梁煤矿智能开采地质保障技术进行了探索实践。黄陵一矿以810综采工作面智能开采为目标,采用综合探测、数据融合等技术,构建工作面静态地质模型,利用地质雷达、惯性导航技术,动态修正工作面地质模型,通过对“透明工作面”高精度地质模型“CT切片”,获取采煤机关键截割曲线,与回采工艺、装备形成耦合协同、联动控制模式,实现基于三维空间感知和智能数据分析的规划截割,推动黄陵一矿810综采工作面实现智能无人化开采。榆家梁煤矿提出构建基于时空数据模型的智能自主割煤工作面无人化开采模式,融合多源异构地质数据建立智能开采工作面多属性地质数据库,构建基于绝对坐标的43101工作面高精度时空地质模型,并基于时态地理信息系统平台(4DGIS)进行三维地质模型可视化,实现地质模型的任意剖切,结合随采地质雷达获取煤厚、煤层顶底板和煤岩界面数据进行动态修正,实现基于高精度地质模型的采煤机自主截割。通过2个案例对面临的难题进行有益的探索,最后进行总结与展望,为企业高质量发展指明了技术方向。
  • Abstract

    Coal mine geological guarantee technology is the key path to achieve accurate and green coal mining. In view of the requirements of intelligent mining and geological guarantee, the main problems faced by the geological guarantee of the mining face were analyzed, mainly including the weak basic theoretical research, insufficient geological exploration accuracy, modeling accuracy unable to meet the engineering application, difficulties in model dynamic updating, and lack of optimal decision-making means for global path of intelligent mining based on spatio-temporal evolution. According to the faced difficulties and technical status, the author explored and practiced the geological guarantee technology of intelligent mining in Yan’an Huangling No.1 Coal Mine and Yujialiang Coal Mine in Shaanxi. Taking the intelligent mining of 810 fully mechanized working face as the target, the integrated detection, data fusion and other technologies were adopted in Huangling No.1 Coal Mine to build a static geological model of the working face. Meanwhile, the geological radar and inertial navigation technology were used to dynamically modify the geological model of the working face. Besides, the key cutting curve of the shearer was obtained through “CT slice” of the high-precision geological model of the “transparent working face”. Thus, a coupling, coordination and linkage control mode was formed with the mining technology and equipment, to realize the planned cutting based on 3D space perception and intelligent data analysis, and further to promote the realization of intelligent unmanned mining in 810 fully mechanized mining face of Huangling No.1 Coal Mine. In terms of Yujialiang Coal Mine, it was proposed to build an unmanned mining mode of intelligent autonomous coal cutting face based on spatio-temporal data model, build a multi-attribute geological database of intelligent mining face by integrating the multi-source heterogeneous geological data, establish a high-precision spatio-temporal geological model of 43101 working face based on absolute coordinates, and visualize the 3D geological model based on the temporal geographic information system platform (4DGIS) to realize the arbitrary cutting of geological model. Then, dynamic correction was carried out with reference to the data of coal thickness, coal seam roof and floor, and coal-rock interface obtained by the geological radar while mining, so as to realize the automatic cutting of the shearer based on the high-precision geological model. Conclusively, a useful exploration of the difficulties faced was made based on two cases, with summary and prospect provided finally, thereby pointing out the technical direction for the high-quality development of enterprises.

  • 关键词

    智能开采地质保障地质探测地理信息系统透明工作面时空数据模型多技术耦合

  • KeyWords

    intelligent mining;geological guarantee;geological exploration;geographic information system;transparent working face;spatio-temporal data model;multi-technology coupling

  • 基金项目(Foundation)
    中国煤炭科工集团科技专项重点项目(2022-TD-ZD003,2021-TD-ZD002);中国煤炭科工集团科技专项面上项目(2022-2-MS001);
  • 文章目录
    1 煤矿回采工作面地质保障要求和面临难题
    1.1 煤矿地质保障要求
    1.2 煤矿回采工作面地质保障技术现状与面临的难题
    1)基础理论研究薄弱
    2)地质探测精度不足
    3)建模精度较难满足工程应用
    4)模型动态更新融合困难
    5)缺乏基于时空演变的采掘工作面全局路径最优决策手段
    2 黄陵一矿智能开采“透明工作面”地质保障探索
    2.1 黄陵一矿智能开采技术背景
    2.2 基于“透明工作面”智能开采技术路线
    2.3 关键技术
    2.3.1 综合探测与测量技术
    1)巷道精准测量
    2)钻孔探测
    3)槽波地震勘探
    2.3.2 地质建模技术
    2.3.3 模型“CT”切片技术
    2.3.4 动态更新技术
    2.4 应用实践小结
    3 榆家梁煤矿基于时空数据模型的智能地质保障实践
    3.1 榆家梁煤矿智能化工作面技术背景
    3.2 基于时空数据模型的工作面智能无人化开采技术路线
    3.3 关键技术
    3.3.1 智能开采灰色地理信息理论
    1) 4DGIS时空数据模型
    2) 4DGIS可视化管控技术
    3) 4DGIS三维引擎关键技术
    3.3.2 高精度三维地质模型建模与自动更新技术
    1) TIN的自动生成算法
    2)断层建模方法
    3) ARTP三维地质体自动生成算法
    3.3.3 工作面地质模型可视化
    1)地质探测与多源数据融合
    2)工作面地质体建模
    3)设计当前回采工作面的外扩多边形
    4)构建生成工作面三维地质可视化模型
    3.3.4 工作面模型动态修正与智能开采
    3.4 应用实践小结
    4 结语与展望
    4.1 结语
    1)煤矿地质保障基础理论与技术体系还需进一步融合
    2)多元数据融合和一致性表达尚待提升
    4.2 展望
    1)随采煤岩界面探测技术
    2)煤矿全空间三维语义驱动的地质模型动态校正
    3)基于动态高精度地质模型的自主智能采煤技术
  • DOI
  • 引用格式
    王国法,张建中,薛国华,刘再斌,刘清,李梅,刘军锋,程健,张学亮.煤矿回采工作面智能地质保障技术进展与思考[J].煤田地质与勘探,2023,51(02):12-26.
  • Citation
    WANG Guofa,ZHANG Jianzhong,XUE Guohua,et al. Progress and reflection of intelligent geological guarantee technology in coal mining face[J]. Coal Geology & Exploration,2023,51(2):12−26
  • 相关文章
  • 相关专题
  • 图表
    •  
    •  
    • 基于“透明工作面”的智能开采技术思路

    图(26) / 表(0)

相关问题

主办单位:煤炭科学研究总院有限公司 中国煤炭学会学术期刊工作委员会

©版权所有2015 煤炭科学研究总院有限公司 地址:北京市朝阳区和平里青年沟东路煤炭大厦 邮编:100013
京ICP备05086979号-16  技术支持:云智互联